基于神经网络的直升机涡轴发动机飞行模式改进无搜索识别方法

S. Vladov, Yurii Shmelov, Ruslan Yakovliev
{"title":"基于神经网络的直升机涡轴发动机飞行模式改进无搜索识别方法","authors":"S. Vladov, Yurii Shmelov, Ruslan Yakovliev","doi":"10.1109/KhPIWeek57572.2022.9916422","DOIUrl":null,"url":null,"abstract":"This work is devoted to the improvement of the automatic control system of helicopters turboshaft engines through the introduction of a block of signal adaptation of engine parameters into it using a modified method of searchless identification. The implementation of the proposed solutions is carried out using the NEWFF multilayer neural network, which made it possible to significantly reduce the maximum absolute error compared to the least squares method.","PeriodicalId":197096,"journal":{"name":"2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modified Searchless Method for Identification of Helicopters Turboshaft Engines at Flight Modes Using Neural Networks\",\"authors\":\"S. Vladov, Yurii Shmelov, Ruslan Yakovliev\",\"doi\":\"10.1109/KhPIWeek57572.2022.9916422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the improvement of the automatic control system of helicopters turboshaft engines through the introduction of a block of signal adaptation of engine parameters into it using a modified method of searchless identification. The implementation of the proposed solutions is carried out using the NEWFF multilayer neural network, which made it possible to significantly reduce the maximum absolute error compared to the least squares method.\",\"PeriodicalId\":197096,\"journal\":{\"name\":\"2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KhPIWeek57572.2022.9916422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KhPIWeek57572.2022.9916422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文采用一种改进的无搜索识别方法,在直升机涡轴发动机自动控制系统中引入发动机参数自适应信号块,改进了直升机涡轴发动机自动控制系统。利用NEWFF多层神经网络实现所提出的解决方案,与最小二乘法相比,可以显著降低最大绝对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Searchless Method for Identification of Helicopters Turboshaft Engines at Flight Modes Using Neural Networks
This work is devoted to the improvement of the automatic control system of helicopters turboshaft engines through the introduction of a block of signal adaptation of engine parameters into it using a modified method of searchless identification. The implementation of the proposed solutions is carried out using the NEWFF multilayer neural network, which made it possible to significantly reduce the maximum absolute error compared to the least squares method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信