一种控制单腿跳跃机器的神经网络学习策略

J. Helferty, J. Collins, M. Kam
{"title":"一种控制单腿跳跃机器的神经网络学习策略","authors":"J. Helferty, J. Collins, M. Kam","doi":"10.1109/ROBOT.1989.100207","DOIUrl":null,"url":null,"abstract":"Results are presented on two neural network strategies for the control of dynamic locomotive systems, in particular a one-legged hopping robot. The control task is to make corrections to the motion of the robot that serve to maintain a fixed level of energy (and minimize energy losses), which yields a stable periodic limit cycle in the system's state space. Control of the robot is achieved by the use of artificial neural networks (ANNs) with a continuous learning memory. Through continuous reinforcement for past successes and failures, the control system develops a stable strategy for accomplishing the desired control objectives. The results are presented in the form of computer simulation that demonstrate the ability of two different ANNs to devise proper control signals that will develop a stable hopping strategy, and hence a stable limit cycle in the robot's state space, using imprecise knowledge of both the current state and the mathematical model of the robot leg.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A neural network learning strategy for the control of a one-legged hopping machine\",\"authors\":\"J. Helferty, J. Collins, M. Kam\",\"doi\":\"10.1109/ROBOT.1989.100207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results are presented on two neural network strategies for the control of dynamic locomotive systems, in particular a one-legged hopping robot. The control task is to make corrections to the motion of the robot that serve to maintain a fixed level of energy (and minimize energy losses), which yields a stable periodic limit cycle in the system's state space. Control of the robot is achieved by the use of artificial neural networks (ANNs) with a continuous learning memory. Through continuous reinforcement for past successes and failures, the control system develops a stable strategy for accomplishing the desired control objectives. The results are presented in the form of computer simulation that demonstrate the ability of two different ANNs to devise proper control signals that will develop a stable hopping strategy, and hence a stable limit cycle in the robot's state space, using imprecise knowledge of both the current state and the mathematical model of the robot leg.<<ETX>>\",\"PeriodicalId\":114394,\"journal\":{\"name\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1989.100207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.100207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

给出了两种用于动态机车系统控制的神经网络策略,并以单腿跳跃机器人为例进行了研究。控制任务是对机器人的运动进行修正,以保持固定的能量水平(并最小化能量损失),从而在系统的状态空间中产生稳定的周期性极限环。机器人的控制是通过使用具有连续学习记忆的人工神经网络来实现的。通过对过去成功和失败的不断强化,控制系统发展出一种稳定的策略来实现期望的控制目标。结果以计算机模拟的形式呈现,展示了两种不同的人工神经网络设计适当的控制信号的能力,这些信号将开发稳定的跳跃策略,从而在机器人的状态空间中使用不精确的当前状态和机器人腿的数学模型的知识来实现稳定的极限环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network learning strategy for the control of a one-legged hopping machine
Results are presented on two neural network strategies for the control of dynamic locomotive systems, in particular a one-legged hopping robot. The control task is to make corrections to the motion of the robot that serve to maintain a fixed level of energy (and minimize energy losses), which yields a stable periodic limit cycle in the system's state space. Control of the robot is achieved by the use of artificial neural networks (ANNs) with a continuous learning memory. Through continuous reinforcement for past successes and failures, the control system develops a stable strategy for accomplishing the desired control objectives. The results are presented in the form of computer simulation that demonstrate the ability of two different ANNs to devise proper control signals that will develop a stable hopping strategy, and hence a stable limit cycle in the robot's state space, using imprecise knowledge of both the current state and the mathematical model of the robot leg.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信