{"title":"Research on the Application of Energy Storage and Peak Shaving Strategy in Rural Power Supply","authors":"Heqi Liu, Jing Shi, Jingzhi Liu, Quanlei Qu, Peng Liao","doi":"10.1109/ICPST56889.2023.10164928","DOIUrl":null,"url":null,"abstract":"From the power supply demand of the rural power grid nowadays, considering the current trend of large-scale application of clean energy, the peak shaving strategy of the battery energy storage system (BESS) under the photovoltaic and wind power generation scenarios is explored in this paper. The peak-to-valley difference (PVD) is selected as the optimization objective, and the charge and discharge capacity of the BESS is calculated according to the immediate output of clean energy power generation and load changes, to suppress the fluctuations from the renewable energy. The function of load peak shaving and valley filling is achieved, thus ensuring the safe and orderly operation of the rural power grid. The feasibility of the strategy is verified through simulation results on multiple scenarios, for the decreased PVD of 44.03%, 24.3%, and 33.4% in Scenario 1-3.","PeriodicalId":231392,"journal":{"name":"2023 IEEE International Conference on Power Science and Technology (ICPST)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Power Science and Technology (ICPST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST56889.2023.10164928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on the Application of Energy Storage and Peak Shaving Strategy in Rural Power Supply
From the power supply demand of the rural power grid nowadays, considering the current trend of large-scale application of clean energy, the peak shaving strategy of the battery energy storage system (BESS) under the photovoltaic and wind power generation scenarios is explored in this paper. The peak-to-valley difference (PVD) is selected as the optimization objective, and the charge and discharge capacity of the BESS is calculated according to the immediate output of clean energy power generation and load changes, to suppress the fluctuations from the renewable energy. The function of load peak shaving and valley filling is achieved, thus ensuring the safe and orderly operation of the rural power grid. The feasibility of the strategy is verified through simulation results on multiple scenarios, for the decreased PVD of 44.03%, 24.3%, and 33.4% in Scenario 1-3.