一类随机森林的离群值生成方法:以遥感影像一类分类为例

Zhongkui Shi, Peijun Li, Yi Sun
{"title":"一类随机森林的离群值生成方法:以遥感影像一类分类为例","authors":"Zhongkui Shi, Peijun Li, Yi Sun","doi":"10.1109/IGARSS.2016.7730331","DOIUrl":null,"url":null,"abstract":"We propose a new outlier generation approach for one-class random forests (OCRF), a recently developed one-class classifier. The proposed method makes use of a positive and unlabeled learning (PUL) algorithm to generate outliers from the unlabeled samples. The outlier samples generated and the target samples are then used to train an OCRF classifier for one-class classification. The proposed method is evaluated using hyperspectral data, and the results showed that the OCRF with the proposed outlier generation method provides high classification accuracy, outperforming the original OCRF, PUL and OCSVM.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An outlier generation approach for one-class random forests: An example in one-class classification of remote sensing imagery\",\"authors\":\"Zhongkui Shi, Peijun Li, Yi Sun\",\"doi\":\"10.1109/IGARSS.2016.7730331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new outlier generation approach for one-class random forests (OCRF), a recently developed one-class classifier. The proposed method makes use of a positive and unlabeled learning (PUL) algorithm to generate outliers from the unlabeled samples. The outlier samples generated and the target samples are then used to train an OCRF classifier for one-class classification. The proposed method is evaluated using hyperspectral data, and the results showed that the OCRF with the proposed outlier generation method provides high classification accuracy, outperforming the original OCRF, PUL and OCSVM.\",\"PeriodicalId\":179622,\"journal\":{\"name\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2016.7730331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对一类随机森林(OCRF)分类器,提出了一种新的离群值生成方法。该方法利用一种正无标记学习(PUL)算法从未标记的样本中生成异常值。然后使用生成的离群样本和目标样本来训练用于单类分类的ocf分类器。利用高光谱数据对该方法进行了评估,结果表明,采用该异常值生成方法的OCSVM分类精度较高,优于原始的OCSVM、PUL和OCSVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An outlier generation approach for one-class random forests: An example in one-class classification of remote sensing imagery
We propose a new outlier generation approach for one-class random forests (OCRF), a recently developed one-class classifier. The proposed method makes use of a positive and unlabeled learning (PUL) algorithm to generate outliers from the unlabeled samples. The outlier samples generated and the target samples are then used to train an OCRF classifier for one-class classification. The proposed method is evaluated using hyperspectral data, and the results showed that the OCRF with the proposed outlier generation method provides high classification accuracy, outperforming the original OCRF, PUL and OCSVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信