使用泊松-伽马吉布斯抽样的志愿者云联盟容量分配方法

A. Rezgui, Gary Quezada, M. M. Rafique, Zaki Malik
{"title":"使用泊松-伽马吉布斯抽样的志愿者云联盟容量分配方法","authors":"A. Rezgui, Gary Quezada, M. M. Rafique, Zaki Malik","doi":"10.1109/CLOUD.2014.47","DOIUrl":null,"url":null,"abstract":"In volunteer cloud federations (VCFs), volunteers join and leave without restrictions and may collectively contribute a large number of heterogeneous virtual machine instances. A challenge is to efficiently allocate this dynamic, heterogeneous capacity to a flow of incoming virtual machine (VM) instantiation requests, i.e., maximize the number of virtual machines that may be placed on the VCF. Cloud federations may allocate VMs far more efficiently if they can accurately predict the demand in terms of VM instantiation requests. In this paper, we present a stochastic technique that forecasts future demand to efficiently allocate VMs to VM instantiation requests. Our approach uses a Markov Chain Monte Carlo (MCMC) simulation known as the Poisson-Gamma Gibbs (PGG) sampler. The PGG sampler is used to determine the arrival rate of each type of VM instantiation requests. This arrival rate is then used to determine an optimal VM placement for the incoming VM instantiation requests. We compared our approach to a solution that adopts a static smallest-fit approach. The experimental results showed that our solution reacts quickly to abrupt changes in the frequency of VM instantiation requests and performs 10% better than the static smallest-fit approach in terms of the total number of satisfied requests.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Capacity Allocation Approach for Volunteer Cloud Federations Using Poisson-Gamma Gibbs Sampling\",\"authors\":\"A. Rezgui, Gary Quezada, M. M. Rafique, Zaki Malik\",\"doi\":\"10.1109/CLOUD.2014.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In volunteer cloud federations (VCFs), volunteers join and leave without restrictions and may collectively contribute a large number of heterogeneous virtual machine instances. A challenge is to efficiently allocate this dynamic, heterogeneous capacity to a flow of incoming virtual machine (VM) instantiation requests, i.e., maximize the number of virtual machines that may be placed on the VCF. Cloud federations may allocate VMs far more efficiently if they can accurately predict the demand in terms of VM instantiation requests. In this paper, we present a stochastic technique that forecasts future demand to efficiently allocate VMs to VM instantiation requests. Our approach uses a Markov Chain Monte Carlo (MCMC) simulation known as the Poisson-Gamma Gibbs (PGG) sampler. The PGG sampler is used to determine the arrival rate of each type of VM instantiation requests. This arrival rate is then used to determine an optimal VM placement for the incoming VM instantiation requests. We compared our approach to a solution that adopts a static smallest-fit approach. The experimental results showed that our solution reacts quickly to abrupt changes in the frequency of VM instantiation requests and performs 10% better than the static smallest-fit approach in terms of the total number of satisfied requests.\",\"PeriodicalId\":288542,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2014.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在志愿者云联盟(vcf)中,志愿者可以不受限制地加入和离开,并且可以共同贡献大量异构虚拟机实例。一个挑战是如何有效地将这种动态的、异构的容量分配给传入的虚拟机(VM)实例化请求流,也就是说,最大化可以放置在VCF上的虚拟机的数量。如果云联合能够准确地预测VM实例化请求的需求,则可以更有效地分配VM。在本文中,我们提出了一种预测未来需求的随机技术,以有效地将VM分配给VM实例化请求。我们的方法使用马尔科夫链蒙特卡罗(MCMC)模拟,称为泊松-伽马吉布斯(PGG)采样器。PGG采样器用于确定每种类型的VM实例化请求的到达率。然后使用此到达率来确定传入VM实例化请求的最佳VM位置。我们将我们的方法与采用静态最小拟合方法的解决方案进行了比较。实验结果表明,我们的解决方案对VM实例化请求频率的突然变化做出快速反应,并且在满足请求总数方面比静态最小拟合方法性能提高10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Capacity Allocation Approach for Volunteer Cloud Federations Using Poisson-Gamma Gibbs Sampling
In volunteer cloud federations (VCFs), volunteers join and leave without restrictions and may collectively contribute a large number of heterogeneous virtual machine instances. A challenge is to efficiently allocate this dynamic, heterogeneous capacity to a flow of incoming virtual machine (VM) instantiation requests, i.e., maximize the number of virtual machines that may be placed on the VCF. Cloud federations may allocate VMs far more efficiently if they can accurately predict the demand in terms of VM instantiation requests. In this paper, we present a stochastic technique that forecasts future demand to efficiently allocate VMs to VM instantiation requests. Our approach uses a Markov Chain Monte Carlo (MCMC) simulation known as the Poisson-Gamma Gibbs (PGG) sampler. The PGG sampler is used to determine the arrival rate of each type of VM instantiation requests. This arrival rate is then used to determine an optimal VM placement for the incoming VM instantiation requests. We compared our approach to a solution that adopts a static smallest-fit approach. The experimental results showed that our solution reacts quickly to abrupt changes in the frequency of VM instantiation requests and performs 10% better than the static smallest-fit approach in terms of the total number of satisfied requests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信