移动系统中上下文感知的应用程序调度:用户接下来会做什么和不做什么?

Joohyun Lee, Kyunghan Lee, Euijin Jeong, Jaemin Jo, N. Shroff
{"title":"移动系统中上下文感知的应用程序调度:用户接下来会做什么和不做什么?","authors":"Joohyun Lee, Kyunghan Lee, Euijin Jeong, Jaemin Jo, N. Shroff","doi":"10.1145/2971648.2971680","DOIUrl":null,"url":null,"abstract":"Usage patterns of mobile devices depend on a variety of factors such as time, location, and previous actions. Hence, context-awareness can be the key to make mobile systems to become personalized and situation dependent in managing their resources. We first reveal new findings from our own Android user experiment: (i) the launching probabilities of applications follow Zipf's law, and (ii) inter-running and running times of applications conform to log-normal distributions. We also find context-dependency in application usage patterns, for which we classify contexts in a personalized manner with unsupervised learning methods. Using the knowledge acquired, we develop a novel context-aware application scheduling framework, CAS that adaptively unloads and preloads background applications in a timely manner. Our trace-driven simulations with 96 user traces demonstrate the benefits of CAS over existing algorithms. We also verify the practicality of CAS by implementing it on the Android platform.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Context-aware application scheduling in mobile systems: what will users do and not do next?\",\"authors\":\"Joohyun Lee, Kyunghan Lee, Euijin Jeong, Jaemin Jo, N. Shroff\",\"doi\":\"10.1145/2971648.2971680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Usage patterns of mobile devices depend on a variety of factors such as time, location, and previous actions. Hence, context-awareness can be the key to make mobile systems to become personalized and situation dependent in managing their resources. We first reveal new findings from our own Android user experiment: (i) the launching probabilities of applications follow Zipf's law, and (ii) inter-running and running times of applications conform to log-normal distributions. We also find context-dependency in application usage patterns, for which we classify contexts in a personalized manner with unsupervised learning methods. Using the knowledge acquired, we develop a novel context-aware application scheduling framework, CAS that adaptively unloads and preloads background applications in a timely manner. Our trace-driven simulations with 96 user traces demonstrate the benefits of CAS over existing algorithms. We also verify the practicality of CAS by implementing it on the Android platform.\",\"PeriodicalId\":303792,\"journal\":{\"name\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2971648.2971680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

移动设备的使用模式取决于各种因素,如时间、地点和以前的行为。因此,上下文感知可能是使移动系统在管理其资源时变得个性化和依赖于情况的关键。我们首先揭示了我们自己的Android用户实验的新发现:(i)应用程序的启动概率遵循Zipf定律,(ii)应用程序的内部运行和运行时间符合对数正态分布。我们还在应用程序使用模式中发现了上下文依赖性,为此我们使用无监督学习方法以个性化的方式对上下文进行分类。利用所获得的知识,我们开发了一种新的上下文感知应用程序调度框架CAS,它可以自适应地及时卸载和预加载后台应用程序。我们使用96个用户跟踪的跟踪驱动模拟演示了CAS相对于现有算法的优势。通过在Android平台上的实现,验证了CAS的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-aware application scheduling in mobile systems: what will users do and not do next?
Usage patterns of mobile devices depend on a variety of factors such as time, location, and previous actions. Hence, context-awareness can be the key to make mobile systems to become personalized and situation dependent in managing their resources. We first reveal new findings from our own Android user experiment: (i) the launching probabilities of applications follow Zipf's law, and (ii) inter-running and running times of applications conform to log-normal distributions. We also find context-dependency in application usage patterns, for which we classify contexts in a personalized manner with unsupervised learning methods. Using the knowledge acquired, we develop a novel context-aware application scheduling framework, CAS that adaptively unloads and preloads background applications in a timely manner. Our trace-driven simulations with 96 user traces demonstrate the benefits of CAS over existing algorithms. We also verify the practicality of CAS by implementing it on the Android platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信