Algol 68的无泪衍生品

P. Craven
{"title":"Algol 68的无泪衍生品","authors":"P. Craven","doi":"10.1145/800238.807138","DOIUrl":null,"url":null,"abstract":"Algol 68 is a very suitable language for tackling problems which lie somewhere between numerical calculation and algebraic manipulation. An algorithm is presented which evaluates a function of n variables and its n partial derivatives using at most C.m operations, where m is the number of operations required to evaluate the function and C is a constant independent of n. By altering mode declarations, an ordinary piece of program text written to evaluate the function can be made instead to generate the expression tree required for calculation of derivatives.","PeriodicalId":226613,"journal":{"name":"Strathclyde ALGOL 68 Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1977-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Derivatives without tears in Algol 68\",\"authors\":\"P. Craven\",\"doi\":\"10.1145/800238.807138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algol 68 is a very suitable language for tackling problems which lie somewhere between numerical calculation and algebraic manipulation. An algorithm is presented which evaluates a function of n variables and its n partial derivatives using at most C.m operations, where m is the number of operations required to evaluate the function and C is a constant independent of n. By altering mode declarations, an ordinary piece of program text written to evaluate the function can be made instead to generate the expression tree required for calculation of derivatives.\",\"PeriodicalId\":226613,\"journal\":{\"name\":\"Strathclyde ALGOL 68 Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1977-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strathclyde ALGOL 68 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800238.807138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strathclyde ALGOL 68 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800238.807138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Algol 68是一种非常适合处理介于数值计算和代数操作之间的问题的语言。提出了一种算法,该算法计算n个变量的函数及其n个偏导数,最多使用C.m操作,其中m是计算函数所需的操作次数,C是独立于n的常数。通过改变模式声明,可以编写用于计算函数的普通程序文本来生成计算导数所需的表达式树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivatives without tears in Algol 68
Algol 68 is a very suitable language for tackling problems which lie somewhere between numerical calculation and algebraic manipulation. An algorithm is presented which evaluates a function of n variables and its n partial derivatives using at most C.m operations, where m is the number of operations required to evaluate the function and C is a constant independent of n. By altering mode declarations, an ordinary piece of program text written to evaluate the function can be made instead to generate the expression tree required for calculation of derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信