{"title":"无机掺杂dl -聚乳酸聚苯胺基甲烷气体传感复合材料","authors":"M. Panigrahi, B. Adhikari","doi":"10.34256/ioriip2127","DOIUrl":null,"url":null,"abstract":"Polyaniline (PANI) nonofibriles have been successfully synthesised by simple chemical-oxidation polymerization method using aniline as a predecessor at room temperature. It was synthesized using H3PO4 dopants. The structure, chemical groups, and electronic transition were investigated by SEM, FTIR, and UV Visible. We present the methane gas response of as-prepared H3PO4 doped DL−PLA/PANI-ES composite film at different concentration. The percentage (%) methane gas response was found to be 9 % at 500ppm.","PeriodicalId":368918,"journal":{"name":"Polyaniline based Composite for Gas Sensors","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inorganic Doped Dl-Polylactide Polyaniline Based Composite for Methane (Ch4) Gas Sensing\",\"authors\":\"M. Panigrahi, B. Adhikari\",\"doi\":\"10.34256/ioriip2127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyaniline (PANI) nonofibriles have been successfully synthesised by simple chemical-oxidation polymerization method using aniline as a predecessor at room temperature. It was synthesized using H3PO4 dopants. The structure, chemical groups, and electronic transition were investigated by SEM, FTIR, and UV Visible. We present the methane gas response of as-prepared H3PO4 doped DL−PLA/PANI-ES composite film at different concentration. The percentage (%) methane gas response was found to be 9 % at 500ppm.\",\"PeriodicalId\":368918,\"journal\":{\"name\":\"Polyaniline based Composite for Gas Sensors\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polyaniline based Composite for Gas Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34256/ioriip2127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyaniline based Composite for Gas Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34256/ioriip2127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inorganic Doped Dl-Polylactide Polyaniline Based Composite for Methane (Ch4) Gas Sensing
Polyaniline (PANI) nonofibriles have been successfully synthesised by simple chemical-oxidation polymerization method using aniline as a predecessor at room temperature. It was synthesized using H3PO4 dopants. The structure, chemical groups, and electronic transition were investigated by SEM, FTIR, and UV Visible. We present the methane gas response of as-prepared H3PO4 doped DL−PLA/PANI-ES composite film at different concentration. The percentage (%) methane gas response was found to be 9 % at 500ppm.