连接大地测量图的全球支配数

X. L. Xaviour, S. Chellathurai
{"title":"连接大地测量图的全球支配数","authors":"X. L. Xaviour, S. Chellathurai","doi":"10.55529/jecnam.11.31.40","DOIUrl":null,"url":null,"abstract":"A set S of vertices in a connected graph {G=(V,E)} is called a geodetic set if\nevery vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbour in D. A geodetic dominating set S is both a geodetic and a dominating set. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. The geodetic global domination number (geodetic domination number) is the minimum cardinality of a geodetic global dominating set (geodetic dominating set) in G. In this paper we introduced and investigate the connected geodetic global domination number of certain graphs and some of the general properties are studied.","PeriodicalId":420122,"journal":{"name":"Journal of Electronics,Computer Networking and Applied Mathematics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connected Geodetic Global Domination Number of a\\nGraph\",\"authors\":\"X. L. Xaviour, S. Chellathurai\",\"doi\":\"10.55529/jecnam.11.31.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set S of vertices in a connected graph {G=(V,E)} is called a geodetic set if\\nevery vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbour in D. A geodetic dominating set S is both a geodetic and a dominating set. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. The geodetic global domination number (geodetic domination number) is the minimum cardinality of a geodetic global dominating set (geodetic dominating set) in G. In this paper we introduced and investigate the connected geodetic global domination number of certain graphs and some of the general properties are studied.\",\"PeriodicalId\":420122,\"journal\":{\"name\":\"Journal of Electronics,Computer Networking and Applied Mathematics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronics,Computer Networking and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55529/jecnam.11.31.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics,Computer Networking and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55529/jecnam.11.31.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

连通图{G=(V,E)}中的顶点集S称为测地线集,如果不在S中的每个顶点都位于S的两个顶点之间的最短路径上,则G中的顶点集D称为G的控制集,如果不在D中的每个顶点在D中至少有一个邻居,则测地线控制集S既是测地线又是控制集。如果S既是G的大地控制集,又是G的全局控制集,则集S称为G的大地控制集。大地控制数(geodetic domination number)是G中的大地控制集(geodetic domination set)的最小基数。本文引入并研究了某些图的连通大地控制集(geodetic domination set),并研究了它的一些一般性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connected Geodetic Global Domination Number of a Graph
A set S of vertices in a connected graph {G=(V,E)} is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbour in D. A geodetic dominating set S is both a geodetic and a dominating set. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. The geodetic global domination number (geodetic domination number) is the minimum cardinality of a geodetic global dominating set (geodetic dominating set) in G. In this paper we introduced and investigate the connected geodetic global domination number of certain graphs and some of the general properties are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信