多层卷积神经网络在铁路安全文本分类中的应用

Taocun Yang, Xin Liu, Guohua Li, Ming-rui Dai, Lei Tian, Yan Xie
{"title":"多层卷积神经网络在铁路安全文本分类中的应用","authors":"Taocun Yang, Xin Liu, Guohua Li, Ming-rui Dai, Lei Tian, Yan Xie","doi":"10.1109/PIC53636.2021.9687014","DOIUrl":null,"url":null,"abstract":"With the rapid development of China High-Speed Rail, massive text data related to railway safety has been accumulated. When analyzing and understanding this data, classifying railway accident report text is essential and tedious work. Usually, such classification tasks are manually done by experts and workers in the railway safety department. Traditional data mining algorithms have been applied in these tasks to classify the text automatically. However, due to the complexity of the text data, classification algorithms sometimes fail and have insufficient learning ability. Meanwhile, the rise of machine learning enables us to deal with these complex problems effectively. In this paper, we propose an end-to-end multi-layer convolutional neural networks model to classify the railway safety-related text. We update the CNN part of the traditional model by increasing layers and adding a multi-height convolutional kernel. Additionally, we develop a data-preprocessing strategy to obtain the neat input data and reduce the complexity of the task. Experiments show that our proposed method achieves competitive performance and is suitable for railway safety-related text classification problems.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Multi-Layer Convolutional Neural Networks for Railway Safety Text Classification\",\"authors\":\"Taocun Yang, Xin Liu, Guohua Li, Ming-rui Dai, Lei Tian, Yan Xie\",\"doi\":\"10.1109/PIC53636.2021.9687014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of China High-Speed Rail, massive text data related to railway safety has been accumulated. When analyzing and understanding this data, classifying railway accident report text is essential and tedious work. Usually, such classification tasks are manually done by experts and workers in the railway safety department. Traditional data mining algorithms have been applied in these tasks to classify the text automatically. However, due to the complexity of the text data, classification algorithms sometimes fail and have insufficient learning ability. Meanwhile, the rise of machine learning enables us to deal with these complex problems effectively. In this paper, we propose an end-to-end multi-layer convolutional neural networks model to classify the railway safety-related text. We update the CNN part of the traditional model by increasing layers and adding a multi-height convolutional kernel. Additionally, we develop a data-preprocessing strategy to obtain the neat input data and reduce the complexity of the task. Experiments show that our proposed method achieves competitive performance and is suitable for railway safety-related text classification problems.\",\"PeriodicalId\":297239,\"journal\":{\"name\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC53636.2021.9687014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着中国高铁的快速发展,积累了大量与铁路安全相关的文本数据。在分析和理解这些数据时,对铁路事故报告文本进行分类是一项必要而繁琐的工作。通常,这种分类任务是由铁路安全部门的专家和工人手工完成的。传统的数据挖掘算法在这些任务中得到了应用,实现了文本的自动分类。然而,由于文本数据的复杂性,分类算法有时会失败,学习能力不足。同时,机器学习的兴起使我们能够有效地处理这些复杂的问题。本文提出了一种端到端多层卷积神经网络模型对铁路安全相关文本进行分类。我们通过增加层数和增加多高度卷积核来更新传统模型的CNN部分。此外,我们还开发了一种数据预处理策略,以获得整洁的输入数据,降低任务的复杂性。实验表明,该方法具有较好的性能,适用于铁路安全相关的文本分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Multi-Layer Convolutional Neural Networks for Railway Safety Text Classification
With the rapid development of China High-Speed Rail, massive text data related to railway safety has been accumulated. When analyzing and understanding this data, classifying railway accident report text is essential and tedious work. Usually, such classification tasks are manually done by experts and workers in the railway safety department. Traditional data mining algorithms have been applied in these tasks to classify the text automatically. However, due to the complexity of the text data, classification algorithms sometimes fail and have insufficient learning ability. Meanwhile, the rise of machine learning enables us to deal with these complex problems effectively. In this paper, we propose an end-to-end multi-layer convolutional neural networks model to classify the railway safety-related text. We update the CNN part of the traditional model by increasing layers and adding a multi-height convolutional kernel. Additionally, we develop a data-preprocessing strategy to obtain the neat input data and reduce the complexity of the task. Experiments show that our proposed method achieves competitive performance and is suitable for railway safety-related text classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信