基于强化学习控制器的两区微电网负荷频率控制

S. Beura, D. Soni, B. Padhy
{"title":"基于强化学习控制器的两区微电网负荷频率控制","authors":"S. Beura, D. Soni, B. Padhy","doi":"10.1109/ICPS52420.2021.9670279","DOIUrl":null,"url":null,"abstract":"In this paper, automatic generation control problem is inspected and different modelling parameters are decided. Initially Genetic algorithm (GA) based parameters of proportional-integral-derivative (PID) controller is applied to the model. Then Q learning (Reinforcement learning) applied to control the frequency and tie line power deviation by controlling the power mismatch between generators and loads. Area control error (ACE) are used as objective function for PID and RL controller respectively. Q-learning based reinforcement agent is introduced which takes the action according to averaged ACE values. Parameters like step size, discount rate, and exploration rate decides the effectiveness of the RL scheme.","PeriodicalId":153735,"journal":{"name":"2021 9th IEEE International Conference on Power Systems (ICPS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load Frequency Control of Two Area Microgrid Using Reinforcement Learning Controller\",\"authors\":\"S. Beura, D. Soni, B. Padhy\",\"doi\":\"10.1109/ICPS52420.2021.9670279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, automatic generation control problem is inspected and different modelling parameters are decided. Initially Genetic algorithm (GA) based parameters of proportional-integral-derivative (PID) controller is applied to the model. Then Q learning (Reinforcement learning) applied to control the frequency and tie line power deviation by controlling the power mismatch between generators and loads. Area control error (ACE) are used as objective function for PID and RL controller respectively. Q-learning based reinforcement agent is introduced which takes the action according to averaged ACE values. Parameters like step size, discount rate, and exploration rate decides the effectiveness of the RL scheme.\",\"PeriodicalId\":153735,\"journal\":{\"name\":\"2021 9th IEEE International Conference on Power Systems (ICPS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 9th IEEE International Conference on Power Systems (ICPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPS52420.2021.9670279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th IEEE International Conference on Power Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS52420.2021.9670279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了自动发电控制问题,确定了不同的建模参数。首先将基于遗传算法的比例-积分-导数(PID)控制器参数应用于模型。然后采用Q学习(强化学习)方法,通过控制发电机与负荷之间的功率失配来控制频率和配线功率偏差。区域控制误差(ACE)分别作为PID控制器和RL控制器的目标函数。引入基于q学习的强化智能体,根据ACE的平均值采取行动。步长、折现率和勘探率等参数决定了RL方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load Frequency Control of Two Area Microgrid Using Reinforcement Learning Controller
In this paper, automatic generation control problem is inspected and different modelling parameters are decided. Initially Genetic algorithm (GA) based parameters of proportional-integral-derivative (PID) controller is applied to the model. Then Q learning (Reinforcement learning) applied to control the frequency and tie line power deviation by controlling the power mismatch between generators and loads. Area control error (ACE) are used as objective function for PID and RL controller respectively. Q-learning based reinforcement agent is introduced which takes the action according to averaged ACE values. Parameters like step size, discount rate, and exploration rate decides the effectiveness of the RL scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信