非线性系统的神经网络控制器

D. Yan, M. Saif
{"title":"非线性系统的神经网络控制器","authors":"D. Yan, M. Saif","doi":"10.1109/CCA.1993.348269","DOIUrl":null,"url":null,"abstract":"In this paper, we present two approaches for the control of an inverted pendulum on a cart. First, we use a combination of a neural network and a simple algorithm, where the neural network is responsible for ranking the current states while the algorithm decides the control action (+10N or -10N) applied. Simulation results show that this method converges at a faster rate than previous researchers' schemes. In the next approach, the ability of artificial neural networks (ANN) to generate nonlinear mapping has been utilized to supplement classical control techniques, to perhaps achieve better performance. We present a hybrid controller consisting of a neural network and classical control technique. The neural network was trained to predict nonlinearities in the system. Having this prediction, a two term control law was designed where one term cancels the nonlinear effects: enabling us to use linear control theory (e.g. pole placement, optimal control, etc.) to obtain the second term. To check the applicability of our method, we tested this scheme on the bilinear model of a paper making machine as well. In these cases, our simulation studies revealed that improvements to the behavior of these systems could be achieved.<<ETX>>","PeriodicalId":276779,"journal":{"name":"Proceedings of IEEE International Conference on Control and Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Neural network based controllers for non-linear systems\",\"authors\":\"D. Yan, M. Saif\",\"doi\":\"10.1109/CCA.1993.348269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present two approaches for the control of an inverted pendulum on a cart. First, we use a combination of a neural network and a simple algorithm, where the neural network is responsible for ranking the current states while the algorithm decides the control action (+10N or -10N) applied. Simulation results show that this method converges at a faster rate than previous researchers' schemes. In the next approach, the ability of artificial neural networks (ANN) to generate nonlinear mapping has been utilized to supplement classical control techniques, to perhaps achieve better performance. We present a hybrid controller consisting of a neural network and classical control technique. The neural network was trained to predict nonlinearities in the system. Having this prediction, a two term control law was designed where one term cancels the nonlinear effects: enabling us to use linear control theory (e.g. pole placement, optimal control, etc.) to obtain the second term. To check the applicability of our method, we tested this scheme on the bilinear model of a paper making machine as well. In these cases, our simulation studies revealed that improvements to the behavior of these systems could be achieved.<<ETX>>\",\"PeriodicalId\":276779,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Control and Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Control and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1993.348269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1993.348269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文给出了小车上倒立摆的两种控制方法。首先,我们使用神经网络和简单算法的组合,其中神经网络负责对当前状态进行排序,而算法决定应用的控制动作(+10N或-10N)。仿真结果表明,该方法的收敛速度比以往的方法快。在接下来的方法中,人工神经网络(ANN)生成非线性映射的能力已被用来补充经典控制技术,以获得更好的性能。提出了一种由神经网络和经典控制技术组成的混合控制器。神经网络被训练来预测系统中的非线性。有了这个预测,设计了一个两项控制律,其中一项抵消了非线性效应:使我们能够使用线性控制理论(例如极点放置,最优控制等)来获得第二项。为了验证该方法的适用性,我们还在一台造纸机的双线性模型上进行了测试。在这些情况下,我们的模拟研究表明,可以实现对这些系统行为的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based controllers for non-linear systems
In this paper, we present two approaches for the control of an inverted pendulum on a cart. First, we use a combination of a neural network and a simple algorithm, where the neural network is responsible for ranking the current states while the algorithm decides the control action (+10N or -10N) applied. Simulation results show that this method converges at a faster rate than previous researchers' schemes. In the next approach, the ability of artificial neural networks (ANN) to generate nonlinear mapping has been utilized to supplement classical control techniques, to perhaps achieve better performance. We present a hybrid controller consisting of a neural network and classical control technique. The neural network was trained to predict nonlinearities in the system. Having this prediction, a two term control law was designed where one term cancels the nonlinear effects: enabling us to use linear control theory (e.g. pole placement, optimal control, etc.) to obtain the second term. To check the applicability of our method, we tested this scheme on the bilinear model of a paper making machine as well. In these cases, our simulation studies revealed that improvements to the behavior of these systems could be achieved.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信