一维接触过程N. Konno猜想的证明

J. Berg, O. Haggstrom, J. Kahn
{"title":"一维接触过程N. Konno猜想的证明","authors":"J. Berg, O. Haggstrom, J. Kahn","doi":"10.1214/074921706000000031","DOIUrl":null,"url":null,"abstract":"Consider the one-dimensional contact process. About ten years ago, N. Konno stated the conjecture that, for all positive integers $n,m$, the upper invariant measure has the following property: Conditioned on the event that $O$ is infected, the events $\\{$All sites $-n,...,-1$ are healthy$\\}$ and $\\{$All sites $1,...,m$ are healthy$\\}$ are negatively correlated. We prove (a stronger version of) this conjecture, and explain that in some sense it is a dual version of the planar case of one of our results in \\citeBHK.","PeriodicalId":416422,"journal":{"name":"Ims Lecture Notes Monograph Series","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Proof of a conjecture of N. Konno for the 1D contact process\",\"authors\":\"J. Berg, O. Haggstrom, J. Kahn\",\"doi\":\"10.1214/074921706000000031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the one-dimensional contact process. About ten years ago, N. Konno stated the conjecture that, for all positive integers $n,m$, the upper invariant measure has the following property: Conditioned on the event that $O$ is infected, the events $\\\\{$All sites $-n,...,-1$ are healthy$\\\\}$ and $\\\\{$All sites $1,...,m$ are healthy$\\\\}$ are negatively correlated. We prove (a stronger version of) this conjecture, and explain that in some sense it is a dual version of the planar case of one of our results in \\\\citeBHK.\",\"PeriodicalId\":416422,\"journal\":{\"name\":\"Ims Lecture Notes Monograph Series\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ims Lecture Notes Monograph Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/074921706000000031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ims Lecture Notes Monograph Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/074921706000000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

考虑一维接触过程。大约十年前,n . Konno提出了一个猜想,即对于所有正整数$n,m$,上不变测度具有以下性质:在$O$被感染的事件条件下,事件$\{$ all sites $-n,…$\}$和$\{$所有站点$1,…,m$是健康的$\}$负相关。我们证明了这个猜想(一个更强的版本),并解释了在某种意义上,它是我们在\citeBHK中一个结果的平面情况的对偶版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of a conjecture of N. Konno for the 1D contact process
Consider the one-dimensional contact process. About ten years ago, N. Konno stated the conjecture that, for all positive integers $n,m$, the upper invariant measure has the following property: Conditioned on the event that $O$ is infected, the events $\{$All sites $-n,...,-1$ are healthy$\}$ and $\{$All sites $1,...,m$ are healthy$\}$ are negatively correlated. We prove (a stronger version of) this conjecture, and explain that in some sense it is a dual version of the planar case of one of our results in \citeBHK.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信