研究植入式葡萄糖生物传感器的缺陷:故障树分析方法

C. Siontorou, F. Batzias
{"title":"研究植入式葡萄糖生物传感器的缺陷:故障树分析方法","authors":"C. Siontorou, F. Batzias","doi":"10.2495/BIO130091","DOIUrl":null,"url":null,"abstract":"Implantable sensors for glucose monitoring are the first step towards the development of an implantable closed-loop diabetes control system. Although significant advances in the designs and chemistries employed to prepare intravascular and subcutaneous devices have been achieved, the biological responses can have a dramatic impact on the analytical accuracy of such probes. With a view to assisting the effective design of such devices for assuring clinical performance, the causes of implantable glucose sensor failure have been investigated by means of Fault Tree Analysis (FTA) relying on fuzzy reasoning to account for uncertainty. The approach suggested may contribute significantly to the self-optimisation of the measuring equipment from one generation to the next as it supports the flexible, ad hoc, and tailor made sensor development, thus potentiating the progress of epidemics from statistics to individualisation.","PeriodicalId":370021,"journal":{"name":"WIT Transactions on Biomedicine and Health","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating implantable glucose biosensors pitfalls: a fault tree analysis approach\",\"authors\":\"C. Siontorou, F. Batzias\",\"doi\":\"10.2495/BIO130091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implantable sensors for glucose monitoring are the first step towards the development of an implantable closed-loop diabetes control system. Although significant advances in the designs and chemistries employed to prepare intravascular and subcutaneous devices have been achieved, the biological responses can have a dramatic impact on the analytical accuracy of such probes. With a view to assisting the effective design of such devices for assuring clinical performance, the causes of implantable glucose sensor failure have been investigated by means of Fault Tree Analysis (FTA) relying on fuzzy reasoning to account for uncertainty. The approach suggested may contribute significantly to the self-optimisation of the measuring equipment from one generation to the next as it supports the flexible, ad hoc, and tailor made sensor development, thus potentiating the progress of epidemics from statistics to individualisation.\",\"PeriodicalId\":370021,\"journal\":{\"name\":\"WIT Transactions on Biomedicine and Health\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIT Transactions on Biomedicine and Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/BIO130091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT Transactions on Biomedicine and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/BIO130091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于血糖监测的植入式传感器是开发植入式闭环糖尿病控制系统的第一步。尽管用于制备血管内和皮下装置的设计和化学已经取得了重大进展,但生物反应可能对此类探针的分析准确性产生巨大影响。为了帮助有效设计此类设备以保证临床性能,本文采用故障树分析法(Fault Tree Analysis, FTA)对植入式葡萄糖传感器失效的原因进行了研究,该方法依靠模糊推理来解释不确定性。所建议的方法可能对测量设备从一代到下一代的自我优化作出重大贡献,因为它支持灵活、特别和定制的传感器开发,从而促进流行病从统计到个性化的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating implantable glucose biosensors pitfalls: a fault tree analysis approach
Implantable sensors for glucose monitoring are the first step towards the development of an implantable closed-loop diabetes control system. Although significant advances in the designs and chemistries employed to prepare intravascular and subcutaneous devices have been achieved, the biological responses can have a dramatic impact on the analytical accuracy of such probes. With a view to assisting the effective design of such devices for assuring clinical performance, the causes of implantable glucose sensor failure have been investigated by means of Fault Tree Analysis (FTA) relying on fuzzy reasoning to account for uncertainty. The approach suggested may contribute significantly to the self-optimisation of the measuring equipment from one generation to the next as it supports the flexible, ad hoc, and tailor made sensor development, thus potentiating the progress of epidemics from statistics to individualisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信