基于卷积神经网络误差补偿的图像超分辨率

Wei-Ting Lu, Chien-Wei Lin, Chih-Hung Kuo, Ying-Chan Tung
{"title":"基于卷积神经网络误差补偿的图像超分辨率","authors":"Wei-Ting Lu, Chien-Wei Lin, Chih-Hung Kuo, Ying-Chan Tung","doi":"10.1109/APSIPA.2017.8282203","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks have been widely studied for the super-resolution (SR) and other image restoration tasks. In this paper, we propose an additional error-compensational convolutional neural network (EC-CNN) that is trained based on the concept of iterative back projection (IBP). The residuals between interpolation images and ground truth images are used to train the network. This CNN model can compensate the residual projection in the IBP more accurately. This CNN- based IBP can be further combined with the super-resolution CNN(SRCNN). Experimental results show that our method can significantly enhance the quality of scale images as a post-processing method. The approach can averagely outperform SRCNN by 0.14 dB and SRCNN-EX by 0.08 dB in PSNR with scaling factor 3.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image super-resolution based on error compensation with convolutional neural network\",\"authors\":\"Wei-Ting Lu, Chien-Wei Lin, Chih-Hung Kuo, Ying-Chan Tung\",\"doi\":\"10.1109/APSIPA.2017.8282203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks have been widely studied for the super-resolution (SR) and other image restoration tasks. In this paper, we propose an additional error-compensational convolutional neural network (EC-CNN) that is trained based on the concept of iterative back projection (IBP). The residuals between interpolation images and ground truth images are used to train the network. This CNN model can compensate the residual projection in the IBP more accurately. This CNN- based IBP can be further combined with the super-resolution CNN(SRCNN). Experimental results show that our method can significantly enhance the quality of scale images as a post-processing method. The approach can averagely outperform SRCNN by 0.14 dB and SRCNN-EX by 0.08 dB in PSNR with scaling factor 3.\",\"PeriodicalId\":142091,\"journal\":{\"name\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2017.8282203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

卷积神经网络在超分辨率和其他图像恢复任务中得到了广泛的研究。在本文中,我们提出了一种基于迭代反投影(IBP)概念训练的附加误差补偿卷积神经网络(EC-CNN)。利用插值图像与地面真值图像之间的残差对网络进行训练。该CNN模型可以更准确地补偿IBP中的残差投影。这种基于CNN的IBP可以与超分辨率CNN(SRCNN)进一步结合。实验结果表明,该方法作为一种后处理方法,可以显著提高尺度图像的质量。该方法的PSNR平均比SRCNN高0.14 dB,比SRCNN- ex高0.08 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image super-resolution based on error compensation with convolutional neural network
Convolutional Neural Networks have been widely studied for the super-resolution (SR) and other image restoration tasks. In this paper, we propose an additional error-compensational convolutional neural network (EC-CNN) that is trained based on the concept of iterative back projection (IBP). The residuals between interpolation images and ground truth images are used to train the network. This CNN model can compensate the residual projection in the IBP more accurately. This CNN- based IBP can be further combined with the super-resolution CNN(SRCNN). Experimental results show that our method can significantly enhance the quality of scale images as a post-processing method. The approach can averagely outperform SRCNN by 0.14 dB and SRCNN-EX by 0.08 dB in PSNR with scaling factor 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信