Lars Bergstrom, M. Fluet, Mike Rainey, John H. Reppy, Stephen Rosen, Adam Shaw
{"title":"用于嵌套数据并行的数据平坦化","authors":"Lars Bergstrom, M. Fluet, Mike Rainey, John H. Reppy, Stephen Rosen, Adam Shaw","doi":"10.1145/2442516.2442525","DOIUrl":null,"url":null,"abstract":"Data parallelism has proven to be an effective technique for high-level programming of a certain class of parallel applications, but it is not well suited to irregular parallel computations. Blelloch and others proposed nested data parallelism (NDP) as a language mechanism for programming irregular parallel applications in a declarative data-parallel style. The key to this approach is a compiler transformation that flattens the NDP computation and data structures into a form that can be executed efficiently on a wide-vector SIMD architecture. Unfortunately, this technique is ill suited to execution on today's multicore machines. We present a new technique, called data-only flattening, for the compilation of NDP, which is suitable for multicore architectures. Data-only flattening transforms nested data structures in order to expose programs to various optimizations while leaving control structures intact. We present a formal semantics of data-only flattening in a core language with a rewriting system. We demonstrate the effectiveness of this technique in the Parallel ML implementation and we report encouraging experimental results across various benchmark applications.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Data-only flattening for nested data parallelism\",\"authors\":\"Lars Bergstrom, M. Fluet, Mike Rainey, John H. Reppy, Stephen Rosen, Adam Shaw\",\"doi\":\"10.1145/2442516.2442525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data parallelism has proven to be an effective technique for high-level programming of a certain class of parallel applications, but it is not well suited to irregular parallel computations. Blelloch and others proposed nested data parallelism (NDP) as a language mechanism for programming irregular parallel applications in a declarative data-parallel style. The key to this approach is a compiler transformation that flattens the NDP computation and data structures into a form that can be executed efficiently on a wide-vector SIMD architecture. Unfortunately, this technique is ill suited to execution on today's multicore machines. We present a new technique, called data-only flattening, for the compilation of NDP, which is suitable for multicore architectures. Data-only flattening transforms nested data structures in order to expose programs to various optimizations while leaving control structures intact. We present a formal semantics of data-only flattening in a core language with a rewriting system. We demonstrate the effectiveness of this technique in the Parallel ML implementation and we report encouraging experimental results across various benchmark applications.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2442516.2442525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442516.2442525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data parallelism has proven to be an effective technique for high-level programming of a certain class of parallel applications, but it is not well suited to irregular parallel computations. Blelloch and others proposed nested data parallelism (NDP) as a language mechanism for programming irregular parallel applications in a declarative data-parallel style. The key to this approach is a compiler transformation that flattens the NDP computation and data structures into a form that can be executed efficiently on a wide-vector SIMD architecture. Unfortunately, this technique is ill suited to execution on today's multicore machines. We present a new technique, called data-only flattening, for the compilation of NDP, which is suitable for multicore architectures. Data-only flattening transforms nested data structures in order to expose programs to various optimizations while leaving control structures intact. We present a formal semantics of data-only flattening in a core language with a rewriting system. We demonstrate the effectiveness of this technique in the Parallel ML implementation and we report encouraging experimental results across various benchmark applications.