非线性系统稳定性分析的李雅普诺夫机

D. V. Prokhorov
{"title":"非线性系统稳定性分析的李雅普诺夫机","authors":"D. V. Prokhorov","doi":"10.1109/ICNN.1994.374324","DOIUrl":null,"url":null,"abstract":"Dynamic analysis of nonlinear system requires tool for study of arbitrary sets of positive semi-trajectories for the system rather than only single semi-trajectories. Such a study is difficult because of very high computational complexity. This paper proposes a Lyapunov machine as a possible tool for stability analysis of nonlinear autonomous systems. The Lyapunov machine is able to test global asymptotic stability, to isolate local asymptotic stability domains and to approximate a Lyapunov function for the system.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Lyapunov machine for stability analysis of nonlinear systems\",\"authors\":\"D. V. Prokhorov\",\"doi\":\"10.1109/ICNN.1994.374324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic analysis of nonlinear system requires tool for study of arbitrary sets of positive semi-trajectories for the system rather than only single semi-trajectories. Such a study is difficult because of very high computational complexity. This paper proposes a Lyapunov machine as a possible tool for stability analysis of nonlinear autonomous systems. The Lyapunov machine is able to test global asymptotic stability, to isolate local asymptotic stability domains and to approximate a Lyapunov function for the system.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

非线性系统的动力学分析需要研究系统的任意正半轨迹集,而不仅仅是单个半轨迹。这样的研究是困难的,因为非常高的计算复杂度。本文提出了一种Lyapunov机作为非线性自治系统稳定性分析的可能工具。该Lyapunov机能够测试系统的全局渐近稳定性,分离局部渐近稳定性域并近似Lyapunov函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lyapunov machine for stability analysis of nonlinear systems
Dynamic analysis of nonlinear system requires tool for study of arbitrary sets of positive semi-trajectories for the system rather than only single semi-trajectories. Such a study is difficult because of very high computational complexity. This paper proposes a Lyapunov machine as a possible tool for stability analysis of nonlinear autonomous systems. The Lyapunov machine is able to test global asymptotic stability, to isolate local asymptotic stability domains and to approximate a Lyapunov function for the system.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信