{"title":"有序参数的连续多重决策过程","authors":"M. Tasaka","doi":"10.5109/13068","DOIUrl":null,"url":null,"abstract":"where for at last one is (s= 1, ••• , r), the strict inequality Ois > eis+, holds in Hil-irO• Let D. be the decision to accept the corresponding hypothesis H., Pr {D.IH'.} be the probability of making decision D. when fr. is true, and Pr {D. I H\"} be the conditional probability of making decision D., given the decision D'. when is true. Under the situation that we can be sure of the existence of the true hypothesis","PeriodicalId":287765,"journal":{"name":"Bulletin of Mathematical Statistics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1973-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUCCESIVE MULTIPLE DECISION PROCEDURES FOR ORDERED PARAMETERS\",\"authors\":\"M. Tasaka\",\"doi\":\"10.5109/13068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"where for at last one is (s= 1, ••• , r), the strict inequality Ois > eis+, holds in Hil-irO• Let D. be the decision to accept the corresponding hypothesis H., Pr {D.IH'.} be the probability of making decision D. when fr. is true, and Pr {D. I H\\\"} be the conditional probability of making decision D., given the decision D'. when is true. Under the situation that we can be sure of the existence of the true hypothesis\",\"PeriodicalId\":287765,\"journal\":{\"name\":\"Bulletin of Mathematical Statistics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5109/13068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5109/13068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
其中对于最后一个是(s= 1,•••••,r),则严格不等式Ois > eis+在hill - iro中成立•设d为接受相应假设H., Pr {D. ih '的决定。表示当f .为真时做出决策D的概率,Pr {D。I H '}表示在给定决策D'的情况下,做出决策D的条件概率。何时为真。在我们可以确定真假设存在的情况下
SUCCESIVE MULTIPLE DECISION PROCEDURES FOR ORDERED PARAMETERS
where for at last one is (s= 1, ••• , r), the strict inequality Ois > eis+, holds in Hil-irO• Let D. be the decision to accept the corresponding hypothesis H., Pr {D.IH'.} be the probability of making decision D. when fr. is true, and Pr {D. I H"} be the conditional probability of making decision D., given the decision D'. when is true. Under the situation that we can be sure of the existence of the true hypothesis