基于集成机器学习方法的12导联心电图分类

Matteo Bodini, M. Rivolta, R. Sassi
{"title":"基于集成机器学习方法的12导联心电图分类","authors":"Matteo Bodini, M. Rivolta, R. Sassi","doi":"10.22489/CinC.2020.406","DOIUrl":null,"url":null,"abstract":"The PhysioNet 2020 Challenge focused on the automatic classification of 27 cardiac abnormalities (CAs) from 12-lead ECG signals. We investigated on a hybrid approach, combining average-template-based algorithms with deep neural networks (DNNs), to build an ensemble classification model. We calibrated the model on the available 40,000+ ECGs, while organizers tested the model on a private test set. Standard ECG preprocessing was applied. For ECGs related to CAs altering the ECG morphology, multi-lead average P, QRS, and T segments were computed. For signals associated with irregular rhythms, time dependent features were computed. The ensemble model comprised of: i) three DNNs to classify morphology-related CAs. ii) a fully connected neural network to classify irregular rhythm; and iii) a threshold-based classifier for premature ventricular beat detection. The organizers designed a score for ranking the models. The ensemble model proposed by our team “BiSP Lab” reached the 40th position, and obtained a score of -0.179 on the private test set. Despite the low performance obtained on the private test set, our ensemble model showed potential for classification of CAs from ECGs.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification of 12-lead ECG With an Ensemble Machine Learning Approach\",\"authors\":\"Matteo Bodini, M. Rivolta, R. Sassi\",\"doi\":\"10.22489/CinC.2020.406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The PhysioNet 2020 Challenge focused on the automatic classification of 27 cardiac abnormalities (CAs) from 12-lead ECG signals. We investigated on a hybrid approach, combining average-template-based algorithms with deep neural networks (DNNs), to build an ensemble classification model. We calibrated the model on the available 40,000+ ECGs, while organizers tested the model on a private test set. Standard ECG preprocessing was applied. For ECGs related to CAs altering the ECG morphology, multi-lead average P, QRS, and T segments were computed. For signals associated with irregular rhythms, time dependent features were computed. The ensemble model comprised of: i) three DNNs to classify morphology-related CAs. ii) a fully connected neural network to classify irregular rhythm; and iii) a threshold-based classifier for premature ventricular beat detection. The organizers designed a score for ranking the models. The ensemble model proposed by our team “BiSP Lab” reached the 40th position, and obtained a score of -0.179 on the private test set. Despite the low performance obtained on the private test set, our ensemble model showed potential for classification of CAs from ECGs.\",\"PeriodicalId\":407282,\"journal\":{\"name\":\"2020 Computing in Cardiology\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Computing in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2020.406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

PhysioNet 2020挑战赛侧重于从12导联心电图信号中自动分类27种心脏异常(ca)。我们研究了一种混合方法,将基于平均模板的算法与深度神经网络(dnn)相结合,建立一个集成分类模型。我们在可用的40,000多个心电图上校准了模型,而组织者在私人测试集上测试了模型。采用标准心电预处理。对于与ca改变心电图形态相关的心电图,计算多导联平均P、QRS和T段。对于与不规则节律相关的信号,计算时间相关特征。该集成模型包括:i)三个dnn对形态相关CAs进行分类。Ii)全连接神经网络对不规则节奏进行分类;iii)基于阈值的室性早搏检测分类器。组织者设计了一个分数来对模特进行排名。我们团队“BiSP Lab”提出的集成模型排名第40位,在私有测试集上获得了-0.179的分数。尽管在私有测试集上获得的性能较低,但我们的集成模型显示了从心电图中分类ca的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of 12-lead ECG With an Ensemble Machine Learning Approach
The PhysioNet 2020 Challenge focused on the automatic classification of 27 cardiac abnormalities (CAs) from 12-lead ECG signals. We investigated on a hybrid approach, combining average-template-based algorithms with deep neural networks (DNNs), to build an ensemble classification model. We calibrated the model on the available 40,000+ ECGs, while organizers tested the model on a private test set. Standard ECG preprocessing was applied. For ECGs related to CAs altering the ECG morphology, multi-lead average P, QRS, and T segments were computed. For signals associated with irregular rhythms, time dependent features were computed. The ensemble model comprised of: i) three DNNs to classify morphology-related CAs. ii) a fully connected neural network to classify irregular rhythm; and iii) a threshold-based classifier for premature ventricular beat detection. The organizers designed a score for ranking the models. The ensemble model proposed by our team “BiSP Lab” reached the 40th position, and obtained a score of -0.179 on the private test set. Despite the low performance obtained on the private test set, our ensemble model showed potential for classification of CAs from ECGs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信