Jihyun Park, K. Denaro, F. Rodriguez, Padhraic Smyth, M. Warschauer
{"title":"从点击流数据中检测学生行为的变化","authors":"Jihyun Park, K. Denaro, F. Rodriguez, Padhraic Smyth, M. Warschauer","doi":"10.1145/3027385.3027430","DOIUrl":null,"url":null,"abstract":"Student clickstream data can provide valuable insights about student activities in an online learning environment and how these activities inform their learning outcomes. However, given the noisy and complex nature of this data, an on-going challenge involves devising statistical techniques that capture clear and meaningful aspects of students' click patterns. In this paper, we utilize statistical change detection techniques to investigate students' online behaviors. Using clickstream data from two large university courses, one face-to-face and one online, we illustrate how this methodology can be used to detect when students change their previewing and reviewing behavior, and how these changes can be related to other aspects of students' activity and performance.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Detecting changes in student behavior from clickstream data\",\"authors\":\"Jihyun Park, K. Denaro, F. Rodriguez, Padhraic Smyth, M. Warschauer\",\"doi\":\"10.1145/3027385.3027430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student clickstream data can provide valuable insights about student activities in an online learning environment and how these activities inform their learning outcomes. However, given the noisy and complex nature of this data, an on-going challenge involves devising statistical techniques that capture clear and meaningful aspects of students' click patterns. In this paper, we utilize statistical change detection techniques to investigate students' online behaviors. Using clickstream data from two large university courses, one face-to-face and one online, we illustrate how this methodology can be used to detect when students change their previewing and reviewing behavior, and how these changes can be related to other aspects of students' activity and performance.\",\"PeriodicalId\":160897,\"journal\":{\"name\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3027430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3027430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting changes in student behavior from clickstream data
Student clickstream data can provide valuable insights about student activities in an online learning environment and how these activities inform their learning outcomes. However, given the noisy and complex nature of this data, an on-going challenge involves devising statistical techniques that capture clear and meaningful aspects of students' click patterns. In this paper, we utilize statistical change detection techniques to investigate students' online behaviors. Using clickstream data from two large university courses, one face-to-face and one online, we illustrate how this methodology can be used to detect when students change their previewing and reviewing behavior, and how these changes can be related to other aspects of students' activity and performance.