从点击流数据中检测学生行为的变化

Jihyun Park, K. Denaro, F. Rodriguez, Padhraic Smyth, M. Warschauer
{"title":"从点击流数据中检测学生行为的变化","authors":"Jihyun Park, K. Denaro, F. Rodriguez, Padhraic Smyth, M. Warschauer","doi":"10.1145/3027385.3027430","DOIUrl":null,"url":null,"abstract":"Student clickstream data can provide valuable insights about student activities in an online learning environment and how these activities inform their learning outcomes. However, given the noisy and complex nature of this data, an on-going challenge involves devising statistical techniques that capture clear and meaningful aspects of students' click patterns. In this paper, we utilize statistical change detection techniques to investigate students' online behaviors. Using clickstream data from two large university courses, one face-to-face and one online, we illustrate how this methodology can be used to detect when students change their previewing and reviewing behavior, and how these changes can be related to other aspects of students' activity and performance.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Detecting changes in student behavior from clickstream data\",\"authors\":\"Jihyun Park, K. Denaro, F. Rodriguez, Padhraic Smyth, M. Warschauer\",\"doi\":\"10.1145/3027385.3027430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student clickstream data can provide valuable insights about student activities in an online learning environment and how these activities inform their learning outcomes. However, given the noisy and complex nature of this data, an on-going challenge involves devising statistical techniques that capture clear and meaningful aspects of students' click patterns. In this paper, we utilize statistical change detection techniques to investigate students' online behaviors. Using clickstream data from two large university courses, one face-to-face and one online, we illustrate how this methodology can be used to detect when students change their previewing and reviewing behavior, and how these changes can be related to other aspects of students' activity and performance.\",\"PeriodicalId\":160897,\"journal\":{\"name\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3027430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3027430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

学生点击流数据可以提供有关在线学习环境中学生活动的宝贵见解,以及这些活动如何影响他们的学习成果。然而,考虑到这些数据的嘈杂和复杂性质,一个持续的挑战涉及设计统计技术,以捕获学生点击模式的清晰和有意义的方面。在本文中,我们利用统计变化检测技术来调查学生的在线行为。使用来自两门大型大学课程的点击流数据,一门是面对面的,另一门是在线的,我们说明了如何使用这种方法来检测学生何时改变他们的预习和复习行为,以及这些变化如何与学生活动和表现的其他方面相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting changes in student behavior from clickstream data
Student clickstream data can provide valuable insights about student activities in an online learning environment and how these activities inform their learning outcomes. However, given the noisy and complex nature of this data, an on-going challenge involves devising statistical techniques that capture clear and meaningful aspects of students' click patterns. In this paper, we utilize statistical change detection techniques to investigate students' online behaviors. Using clickstream data from two large university courses, one face-to-face and one online, we illustrate how this methodology can be used to detect when students change their previewing and reviewing behavior, and how these changes can be related to other aspects of students' activity and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信