A. Kostrov, V. Stempitsky, Vladimir N. Kazimirchik
{"title":"铁磁/绝缘体/半导体结构中磁隧道结的模拟","authors":"A. Kostrov, V. Stempitsky, Vladimir N. Kazimirchik","doi":"10.1117/12.836973","DOIUrl":null,"url":null,"abstract":"In this work, we present a physical model and electrical macromodel for simulation of Magnetic Tunnel Junction (MTJ) effect based on Ferromagnetic/Insulator/Semiconductor (FIS) nanostructure. A modified Brinkman model has been proposed by including the voltage-dependent density of states of the ferromagnetic electrodes in order to explain the bias dependence magnitoresistance. The model takes into account injection of carriers in the semiconductor and Shottky barrier, electron tunneling through thin insulator and spin-transfer torque writing approach in memory cell. These very promising features should constitute the third generation of Magnetoresistive RAM (MRAM). Besides, the model can efficiently be used to design magnetic CMOS circuits. The behavioral macro-model has been developed by means of Verilog-AMS language and implemented on the Cadence Virtuoso platform with Spectre simulator.","PeriodicalId":117315,"journal":{"name":"Nanodesign, Technology, and Computer Simulations","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simulation of magnetic tunnel junction in ferromagnetic/insulator/semiconductor structure\",\"authors\":\"A. Kostrov, V. Stempitsky, Vladimir N. Kazimirchik\",\"doi\":\"10.1117/12.836973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a physical model and electrical macromodel for simulation of Magnetic Tunnel Junction (MTJ) effect based on Ferromagnetic/Insulator/Semiconductor (FIS) nanostructure. A modified Brinkman model has been proposed by including the voltage-dependent density of states of the ferromagnetic electrodes in order to explain the bias dependence magnitoresistance. The model takes into account injection of carriers in the semiconductor and Shottky barrier, electron tunneling through thin insulator and spin-transfer torque writing approach in memory cell. These very promising features should constitute the third generation of Magnetoresistive RAM (MRAM). Besides, the model can efficiently be used to design magnetic CMOS circuits. The behavioral macro-model has been developed by means of Verilog-AMS language and implemented on the Cadence Virtuoso platform with Spectre simulator.\",\"PeriodicalId\":117315,\"journal\":{\"name\":\"Nanodesign, Technology, and Computer Simulations\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanodesign, Technology, and Computer Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.836973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanodesign, Technology, and Computer Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.836973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of magnetic tunnel junction in ferromagnetic/insulator/semiconductor structure
In this work, we present a physical model and electrical macromodel for simulation of Magnetic Tunnel Junction (MTJ) effect based on Ferromagnetic/Insulator/Semiconductor (FIS) nanostructure. A modified Brinkman model has been proposed by including the voltage-dependent density of states of the ferromagnetic electrodes in order to explain the bias dependence magnitoresistance. The model takes into account injection of carriers in the semiconductor and Shottky barrier, electron tunneling through thin insulator and spin-transfer torque writing approach in memory cell. These very promising features should constitute the third generation of Magnetoresistive RAM (MRAM). Besides, the model can efficiently be used to design magnetic CMOS circuits. The behavioral macro-model has been developed by means of Verilog-AMS language and implemented on the Cadence Virtuoso platform with Spectre simulator.