{"title":"流动条件下血小板粘附中二磷酸腺苷受体与蛋白激酶C同工型的相互作用","authors":"B. Shenkman, I. Budnik, Y. Einav","doi":"10.4081/btvb.2023.51","DOIUrl":null,"url":null,"abstract":"Adenosine diphosphate (ADP) receptors and protein-kinase C (PKC) isoforms play different role in platelet activity. In the present study, whole blood platelet adhesion at 200 - 1800 s-1 shear rates was investigated by Impact-R system, measuring percent of surface coverage (SC) by platelets. Gradual heightened shear rate par-alleled increase of platelet adhesion. At relatively low shear (200 and 1000 s-1) blockade of neither P2Y1 receptor nor P2Y12 receptor (by A2P5P and 2MeSAMP, respectively) affected SC. At high shear rate (1800 s-1) reduction of SC was observed by 2MeSAMP. Treatment of blood with PKCδ inhibitor (rottlerin) but not PKCα,β inhibitor (Gö6976) diminished platelet adhe-sion. Among all the agents, only combination of 2MeSAMP and rottlerin used at subthreshold concentrations was able to inhibit platelet adhesion under high shear condition. We suggest that platelet agonist-induced P2Y12 and PKCδ signaling essentially stimulates platelet adhesion under flow condition, the important initiating step of thrombin formation.","PeriodicalId":186928,"journal":{"name":"Bleeding, Thrombosis, and Vascular Biology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction between adenosine diphosphate receptors and protein-kinase C isoforms in platelet adhesion under flow condition\",\"authors\":\"B. Shenkman, I. Budnik, Y. Einav\",\"doi\":\"10.4081/btvb.2023.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adenosine diphosphate (ADP) receptors and protein-kinase C (PKC) isoforms play different role in platelet activity. In the present study, whole blood platelet adhesion at 200 - 1800 s-1 shear rates was investigated by Impact-R system, measuring percent of surface coverage (SC) by platelets. Gradual heightened shear rate par-alleled increase of platelet adhesion. At relatively low shear (200 and 1000 s-1) blockade of neither P2Y1 receptor nor P2Y12 receptor (by A2P5P and 2MeSAMP, respectively) affected SC. At high shear rate (1800 s-1) reduction of SC was observed by 2MeSAMP. Treatment of blood with PKCδ inhibitor (rottlerin) but not PKCα,β inhibitor (Gö6976) diminished platelet adhe-sion. Among all the agents, only combination of 2MeSAMP and rottlerin used at subthreshold concentrations was able to inhibit platelet adhesion under high shear condition. We suggest that platelet agonist-induced P2Y12 and PKCδ signaling essentially stimulates platelet adhesion under flow condition, the important initiating step of thrombin formation.\",\"PeriodicalId\":186928,\"journal\":{\"name\":\"Bleeding, Thrombosis, and Vascular Biology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bleeding, Thrombosis, and Vascular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/btvb.2023.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bleeding, Thrombosis, and Vascular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/btvb.2023.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interaction between adenosine diphosphate receptors and protein-kinase C isoforms in platelet adhesion under flow condition
Adenosine diphosphate (ADP) receptors and protein-kinase C (PKC) isoforms play different role in platelet activity. In the present study, whole blood platelet adhesion at 200 - 1800 s-1 shear rates was investigated by Impact-R system, measuring percent of surface coverage (SC) by platelets. Gradual heightened shear rate par-alleled increase of platelet adhesion. At relatively low shear (200 and 1000 s-1) blockade of neither P2Y1 receptor nor P2Y12 receptor (by A2P5P and 2MeSAMP, respectively) affected SC. At high shear rate (1800 s-1) reduction of SC was observed by 2MeSAMP. Treatment of blood with PKCδ inhibitor (rottlerin) but not PKCα,β inhibitor (Gö6976) diminished platelet adhe-sion. Among all the agents, only combination of 2MeSAMP and rottlerin used at subthreshold concentrations was able to inhibit platelet adhesion under high shear condition. We suggest that platelet agonist-induced P2Y12 and PKCδ signaling essentially stimulates platelet adhesion under flow condition, the important initiating step of thrombin formation.