使用关联分类验证移动设备用户

T. Neal, D. Woodard
{"title":"使用关联分类验证移动设备用户","authors":"T. Neal, D. Woodard","doi":"10.1109/BTAS.2017.8272684","DOIUrl":null,"url":null,"abstract":"Because passwords and personal identification numbers are easily forgotten, stolen, or reused on multiple accounts, the current norm for mobile device security is quickly becoming inefficient and inconvenient. Thus, manufacturers have worked to make physiological biometrics accessible to mobile device owners as improved security measures. While behavioral biometrics has yet to receive commercial attention, researchers have continued to consider these approaches as well. However, studies of interactive data are limited, and efforts which are aimed at improving the performance of such techniques remain relevant. Thus, this paper provides a performance analysis of application, Bluetooth, and Wi-Fi data collected from 189 subjects on a mobile device for user verification. Results indicate that user authentication can be achieved with up to 91% accuracy, demonstrating the effectiveness of associative classification as a feature extraction technique.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"43 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using associative classification to authenticate mobile device users\",\"authors\":\"T. Neal, D. Woodard\",\"doi\":\"10.1109/BTAS.2017.8272684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because passwords and personal identification numbers are easily forgotten, stolen, or reused on multiple accounts, the current norm for mobile device security is quickly becoming inefficient and inconvenient. Thus, manufacturers have worked to make physiological biometrics accessible to mobile device owners as improved security measures. While behavioral biometrics has yet to receive commercial attention, researchers have continued to consider these approaches as well. However, studies of interactive data are limited, and efforts which are aimed at improving the performance of such techniques remain relevant. Thus, this paper provides a performance analysis of application, Bluetooth, and Wi-Fi data collected from 189 subjects on a mobile device for user verification. Results indicate that user authentication can be achieved with up to 91% accuracy, demonstrating the effectiveness of associative classification as a feature extraction technique.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"43 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于密码和个人识别码很容易被遗忘、被盗或在多个账户上重复使用,目前的移动设备安全规范正迅速变得低效和不方便。因此,制造商一直在努力使移动设备所有者能够使用生理生物识别技术,作为改进的安全措施。虽然行为生物识别技术尚未得到商业关注,但研究人员也在继续考虑这些方法。然而,对交互数据的研究是有限的,旨在提高这种技术性能的努力仍然是相关的。因此,本文提供了从移动设备上收集的189名受试者的应用程序,蓝牙和Wi-Fi数据的性能分析,以供用户验证。结果表明,用户身份验证的准确率高达91%,证明了关联分类作为一种特征提取技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using associative classification to authenticate mobile device users
Because passwords and personal identification numbers are easily forgotten, stolen, or reused on multiple accounts, the current norm for mobile device security is quickly becoming inefficient and inconvenient. Thus, manufacturers have worked to make physiological biometrics accessible to mobile device owners as improved security measures. While behavioral biometrics has yet to receive commercial attention, researchers have continued to consider these approaches as well. However, studies of interactive data are limited, and efforts which are aimed at improving the performance of such techniques remain relevant. Thus, this paper provides a performance analysis of application, Bluetooth, and Wi-Fi data collected from 189 subjects on a mobile device for user verification. Results indicate that user authentication can be achieved with up to 91% accuracy, demonstrating the effectiveness of associative classification as a feature extraction technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信