卫星应用多功能结构技术

G. Aglietti, C. Schwingshackl, S. Roberts
{"title":"卫星应用多功能结构技术","authors":"G. Aglietti, C. Schwingshackl, S. Roberts","doi":"10.1177/0583102407077397","DOIUrl":null,"url":null,"abstract":"Conventional spacecraft subsystems are designed and manufactured separately, and are integrated only during the final stages of satellite development. This requires containers for the subsystems' hardware, mechanical interfaces, panels, frames, bulky wire harnesses, etc., which add considerable mass and volume. As all subsystems are generally secured to the structure, the multifunctional structure approach aims at merging these elements into the structure, so that the structure also carries out some of the typical functions of the subsystems (e.g. electrical energy storage). The main advantages are as follows: (i) removal of the bolted mechanical interfaces and most of the subsystems' containers; (ii) reduction of the satellite structure mass, as the strength of the parts of the subsystem imbedded into the structure are exploited, and substitute purely structural parts; (iii) reduction of the overall satellite volume, as elements such as battery packs or electronic harnesses can be built into the structure's volume. There are still issues that need to be addressed to allow a wider utilization of multifunctional structures. However, the development of concurrent engineering approaches, to carry out an integrated design of the spacecraft, together with advances in the subsystems' disciplines, will help to promote the further diffusion of multifunctional structures. © 2007 SAGE Pulications.","PeriodicalId":405331,"journal":{"name":"The Shock and Vibration Digest","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Multifunctional structure technologies for satellite applications\",\"authors\":\"G. Aglietti, C. Schwingshackl, S. Roberts\",\"doi\":\"10.1177/0583102407077397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional spacecraft subsystems are designed and manufactured separately, and are integrated only during the final stages of satellite development. This requires containers for the subsystems' hardware, mechanical interfaces, panels, frames, bulky wire harnesses, etc., which add considerable mass and volume. As all subsystems are generally secured to the structure, the multifunctional structure approach aims at merging these elements into the structure, so that the structure also carries out some of the typical functions of the subsystems (e.g. electrical energy storage). The main advantages are as follows: (i) removal of the bolted mechanical interfaces and most of the subsystems' containers; (ii) reduction of the satellite structure mass, as the strength of the parts of the subsystem imbedded into the structure are exploited, and substitute purely structural parts; (iii) reduction of the overall satellite volume, as elements such as battery packs or electronic harnesses can be built into the structure's volume. There are still issues that need to be addressed to allow a wider utilization of multifunctional structures. However, the development of concurrent engineering approaches, to carry out an integrated design of the spacecraft, together with advances in the subsystems' disciplines, will help to promote the further diffusion of multifunctional structures. © 2007 SAGE Pulications.\",\"PeriodicalId\":405331,\"journal\":{\"name\":\"The Shock and Vibration Digest\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Shock and Vibration Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0583102407077397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Shock and Vibration Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0583102407077397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

传统航天器子系统是单独设计和制造的,只有在卫星发展的最后阶段才集成。这需要为子系统的硬件、机械接口、面板、框架、笨重的线束等提供容器,这增加了相当大的质量和体积。由于所有子系统通常都固定在结构上,多功能结构方法旨在将这些元素合并到结构中,以便该结构还执行子系统的一些典型功能(例如,电能存储)。主要优点如下:(1)消除了螺栓连接的机械接口和大部分子系统的容器;(ii)减少卫星结构质量,因为利用了嵌入结构的分系统部件的强度,并用纯结构部件代替;(iii)减少卫星的整体体积,因为电池组或电子线束等元件可以装入结构的体积中。为了更广泛地利用多功能结构,仍有一些问题需要解决。然而,并行工程方法的发展,以实现航天器的集成设计,以及子系统学科的进步,将有助于促进多功能结构的进一步扩散。©2007 SAGE出版社。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctional structure technologies for satellite applications
Conventional spacecraft subsystems are designed and manufactured separately, and are integrated only during the final stages of satellite development. This requires containers for the subsystems' hardware, mechanical interfaces, panels, frames, bulky wire harnesses, etc., which add considerable mass and volume. As all subsystems are generally secured to the structure, the multifunctional structure approach aims at merging these elements into the structure, so that the structure also carries out some of the typical functions of the subsystems (e.g. electrical energy storage). The main advantages are as follows: (i) removal of the bolted mechanical interfaces and most of the subsystems' containers; (ii) reduction of the satellite structure mass, as the strength of the parts of the subsystem imbedded into the structure are exploited, and substitute purely structural parts; (iii) reduction of the overall satellite volume, as elements such as battery packs or electronic harnesses can be built into the structure's volume. There are still issues that need to be addressed to allow a wider utilization of multifunctional structures. However, the development of concurrent engineering approaches, to carry out an integrated design of the spacecraft, together with advances in the subsystems' disciplines, will help to promote the further diffusion of multifunctional structures. © 2007 SAGE Pulications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信