用于深度视频理解的多模态分析的混合改进

Beibei Zhang, Fan Yu, Yaqun Fang, Tongwei Ren, Gangshan Wu
{"title":"用于深度视频理解的多模态分析的混合改进","authors":"Beibei Zhang, Fan Yu, Yaqun Fang, Tongwei Ren, Gangshan Wu","doi":"10.1145/3469877.3493599","DOIUrl":null,"url":null,"abstract":"The Deep Video Understanding Challenge (DVU) is a task that focuses on comprehending long duration videos which involve many entities. Its main goal is to build relationship and interaction knowledge graph between entities to answer relevant questions. In this paper, we improved the joint learning method which we previously proposed in many aspects, including few shot learning, optical flow feature, entity recognition, and video description matching. We verified the effectiveness of these measures through experiments.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid Improvements in Multimodal Analysis for Deep Video Understanding\",\"authors\":\"Beibei Zhang, Fan Yu, Yaqun Fang, Tongwei Ren, Gangshan Wu\",\"doi\":\"10.1145/3469877.3493599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Deep Video Understanding Challenge (DVU) is a task that focuses on comprehending long duration videos which involve many entities. Its main goal is to build relationship and interaction knowledge graph between entities to answer relevant questions. In this paper, we improved the joint learning method which we previously proposed in many aspects, including few shot learning, optical flow feature, entity recognition, and video description matching. We verified the effectiveness of these measures through experiments.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3493599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3493599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度视频理解挑战(Deep Video Understanding Challenge, DVU)是一项专注于理解涉及多个实体的长时间视频的任务。其主要目标是建立实体之间的关系和交互知识图谱,以回答相关问题。本文对之前提出的联合学习方法进行了改进,包括少镜头学习、光流特征、实体识别、视频描述匹配等方面。我们通过实验验证了这些措施的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Improvements in Multimodal Analysis for Deep Video Understanding
The Deep Video Understanding Challenge (DVU) is a task that focuses on comprehending long duration videos which involve many entities. Its main goal is to build relationship and interaction knowledge graph between entities to answer relevant questions. In this paper, we improved the joint learning method which we previously proposed in many aspects, including few shot learning, optical flow feature, entity recognition, and video description matching. We verified the effectiveness of these measures through experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信