{"title":"基于小比大比的市场篮数据聚类算法","authors":"Ching-Huang Yun, Kun-Ta Chuang, Ming-Syan Chen","doi":"10.1109/CMPSAC.2001.960660","DOIUrl":null,"url":null,"abstract":"In this paper we devise an efficient algorithm for clustering market-basket data items. In view of the nature of clustering market basket data, we devise in this paper a novel measurement, called the small-large (abbreviated as SL) ratio, and utilize this ratio to perform the clustering. With this SL ratio measurement, we develop an efficient clustering algorithm for data items to minimize the SL ratio in each group. The proposed algorithm not only incurs an execution time that is significantly smaller than that by prior work but also leads to the clustering results of very good quality.","PeriodicalId":269568,"journal":{"name":"25th Annual International Computer Software and Applications Conference. COMPSAC 2001","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"An efficient clustering algorithm for market basket data based on small large ratios\",\"authors\":\"Ching-Huang Yun, Kun-Ta Chuang, Ming-Syan Chen\",\"doi\":\"10.1109/CMPSAC.2001.960660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we devise an efficient algorithm for clustering market-basket data items. In view of the nature of clustering market basket data, we devise in this paper a novel measurement, called the small-large (abbreviated as SL) ratio, and utilize this ratio to perform the clustering. With this SL ratio measurement, we develop an efficient clustering algorithm for data items to minimize the SL ratio in each group. The proposed algorithm not only incurs an execution time that is significantly smaller than that by prior work but also leads to the clustering results of very good quality.\",\"PeriodicalId\":269568,\"journal\":{\"name\":\"25th Annual International Computer Software and Applications Conference. COMPSAC 2001\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"25th Annual International Computer Software and Applications Conference. COMPSAC 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMPSAC.2001.960660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"25th Annual International Computer Software and Applications Conference. COMPSAC 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.2001.960660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient clustering algorithm for market basket data based on small large ratios
In this paper we devise an efficient algorithm for clustering market-basket data items. In view of the nature of clustering market basket data, we devise in this paper a novel measurement, called the small-large (abbreviated as SL) ratio, and utilize this ratio to perform the clustering. With this SL ratio measurement, we develop an efficient clustering algorithm for data items to minimize the SL ratio in each group. The proposed algorithm not only incurs an execution time that is significantly smaller than that by prior work but also leads to the clustering results of very good quality.