支持向量训练的递归模糊系统

I. Chung, Chia-Feng Juang, Cheng-Da Hsieh
{"title":"支持向量训练的递归模糊系统","authors":"I. Chung, Chia-Feng Juang, Cheng-Da Hsieh","doi":"10.1109/FUZZY.2010.5584494","DOIUrl":null,"url":null,"abstract":"This paper proposes a Support Vector-trained Recurrent Fuzzy System (SV-RFS) which comprises recurrent Takagi-Sugeno (TS) fuzzy if-then rules. The SV-RFS memories past input information by feeding the past firing strength of a fuzzy rule back to itself. The rules are generated based on a clustering-like algorithm. The feedback loop gains and consequent part parameters are learned through support vector regression (SVR) in order to improve system generalization ability. The SV-RFS is applied to noisy chaotic sequence prediction to verify its effectiveness.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Support Vector-trained Recurrent Fuzzy System\",\"authors\":\"I. Chung, Chia-Feng Juang, Cheng-Da Hsieh\",\"doi\":\"10.1109/FUZZY.2010.5584494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Support Vector-trained Recurrent Fuzzy System (SV-RFS) which comprises recurrent Takagi-Sugeno (TS) fuzzy if-then rules. The SV-RFS memories past input information by feeding the past firing strength of a fuzzy rule back to itself. The rules are generated based on a clustering-like algorithm. The feedback loop gains and consequent part parameters are learned through support vector regression (SVR) in order to improve system generalization ability. The SV-RFS is applied to noisy chaotic sequence prediction to verify its effectiveness.\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种支持向量训练的递归模糊系统(SV-RFS),该系统由递归Takagi-Sugeno (TS)模糊if-then规则组成。SV-RFS通过将模糊规则过去的触发强度反馈给自身来记忆过去的输入信息。这些规则是基于类似聚类的算法生成的。通过支持向量回归(SVR)学习反馈回路增益和后续部分参数,提高系统泛化能力。将该方法应用于有噪声混沌序列预测,验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support Vector-trained Recurrent Fuzzy System
This paper proposes a Support Vector-trained Recurrent Fuzzy System (SV-RFS) which comprises recurrent Takagi-Sugeno (TS) fuzzy if-then rules. The SV-RFS memories past input information by feeding the past firing strength of a fuzzy rule back to itself. The rules are generated based on a clustering-like algorithm. The feedback loop gains and consequent part parameters are learned through support vector regression (SVR) in order to improve system generalization ability. The SV-RFS is applied to noisy chaotic sequence prediction to verify its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信