具有动态障碍物环境下的Cramer-rao下界定位

Riming Wang, Jiu-chao Feng
{"title":"具有动态障碍物环境下的Cramer-rao下界定位","authors":"Riming Wang, Jiu-chao Feng","doi":"10.1109/ICCWAMTIP.2014.7073359","DOIUrl":null,"url":null,"abstract":"Cramer-Rao Lower Bound (CRLB) of location estimation under Gaussian distribution is widely used in localization applications. However, under the environments with dynamical obstacles, the existing CRLB does not represent the effect of the non-line-of-sight (NLOS) bias caused by dynamical obstacles. In this paper, based on received signal strength (RSS) measurements, a uniform random variable is used to model the NLOS bias effect. Furthermore, The corresponding maximum likelihood estimator (MLE) and CRLB under the joint distribution of Gaussian distribution and uniform distribution are derived. Numerical results validate that the proposed MLE and CRLB are effective in environments with dynamic obstacles.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cramer-rao lower bound for localization in environments with dynamical obstacles\",\"authors\":\"Riming Wang, Jiu-chao Feng\",\"doi\":\"10.1109/ICCWAMTIP.2014.7073359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cramer-Rao Lower Bound (CRLB) of location estimation under Gaussian distribution is widely used in localization applications. However, under the environments with dynamical obstacles, the existing CRLB does not represent the effect of the non-line-of-sight (NLOS) bias caused by dynamical obstacles. In this paper, based on received signal strength (RSS) measurements, a uniform random variable is used to model the NLOS bias effect. Furthermore, The corresponding maximum likelihood estimator (MLE) and CRLB under the joint distribution of Gaussian distribution and uniform distribution are derived. Numerical results validate that the proposed MLE and CRLB are effective in environments with dynamic obstacles.\",\"PeriodicalId\":211273,\"journal\":{\"name\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2014.7073359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯分布下的位置估计的crmer - rao下界(CRLB)在定位应用中得到了广泛的应用。然而,在存在动态障碍物的环境下,现有的CRLB并不能代表动态障碍物引起的非视距偏差的影响。本文基于接收信号强度(RSS)测量,采用均匀随机变量来模拟NLOS偏置效应。在此基础上,推导了高斯分布和均匀分布联合分布下的最大似然估计量(MLE)和最大似然估计量(CRLB)。数值结果验证了所提出的最大似然估计和最小似然估计在有动态障碍物的环境下是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cramer-rao lower bound for localization in environments with dynamical obstacles
Cramer-Rao Lower Bound (CRLB) of location estimation under Gaussian distribution is widely used in localization applications. However, under the environments with dynamical obstacles, the existing CRLB does not represent the effect of the non-line-of-sight (NLOS) bias caused by dynamical obstacles. In this paper, based on received signal strength (RSS) measurements, a uniform random variable is used to model the NLOS bias effect. Furthermore, The corresponding maximum likelihood estimator (MLE) and CRLB under the joint distribution of Gaussian distribution and uniform distribution are derived. Numerical results validate that the proposed MLE and CRLB are effective in environments with dynamic obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信