一类非线性演化系统对机械现象的不动点法

A. Merouani, Abdelmoumene Djabi
{"title":"一类非线性演化系统对机械现象的不动点法","authors":"A. Merouani, Abdelmoumene Djabi","doi":"10.12816/0010705","DOIUrl":null,"url":null,"abstract":"This paper deals with the study of a class of nonlinear evolution systems with parameter t which may interpreted as the time or the absolute temperature. Such type of problems arise in the study of quasistatic problem in viscoplasticity. The existence and uniqueness of the solution is obtained using standard arguments for elliptic equations followed by a xed point technique. The continuous dependence of the solution with respect to the data is also given. Finally, a mechanical example is presented in order to illustrate this result.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fixed Point Method for a Class of Nonlinear Evolution Systems Modeling a Mechanical Phenomenon\",\"authors\":\"A. Merouani, Abdelmoumene Djabi\",\"doi\":\"10.12816/0010705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the study of a class of nonlinear evolution systems with parameter t which may interpreted as the time or the absolute temperature. Such type of problems arise in the study of quasistatic problem in viscoplasticity. The existence and uniqueness of the solution is obtained using standard arguments for elliptic equations followed by a xed point technique. The continuous dependence of the solution with respect to the data is also given. Finally, a mechanical example is presented in order to illustrate this result.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0010705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0010705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类参数t可以解释为时间或绝对温度的非线性演化系统。这类问题出现在粘塑性准静态问题的研究中。利用椭圆型方程的标准参数,利用共轭点技术,得到了该方程解的存在唯一性。并给出了解对数据的连续依赖关系。最后,给出了一个力学实例来说明这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fixed Point Method for a Class of Nonlinear Evolution Systems Modeling a Mechanical Phenomenon
This paper deals with the study of a class of nonlinear evolution systems with parameter t which may interpreted as the time or the absolute temperature. Such type of problems arise in the study of quasistatic problem in viscoplasticity. The existence and uniqueness of the solution is obtained using standard arguments for elliptic equations followed by a xed point technique. The continuous dependence of the solution with respect to the data is also given. Finally, a mechanical example is presented in order to illustrate this result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信