基于强化学习的分布式MU-MIMO干扰协调

Chang Ge, Sijie Xia, Qiang Chen, F. Adachi
{"title":"基于强化学习的分布式MU-MIMO干扰协调","authors":"Chang Ge, Sijie Xia, Qiang Chen, F. Adachi","doi":"10.1109/wpmc52694.2021.9700445","DOIUrl":null,"url":null,"abstract":"In our previous studies, we proposed a graph coloring algorithm (GCA) based on heuristics to solve the interference coordination problem for distributed multi-user multi-input multi-output (MU-MIMO). In this paper, along with the recent advances of machine learning, we propose a reinforcement learning (RL) based GCA for cluster-wise distributed MU-MIMO. The computer simulation confirms that our newly proposed RL-GCA can significantly improve the downlink link capacity compared with other non-intelligent GCAs. Also, an interesting conclusion has been obtained in terms of chromatic number (required minimum number of colors). It is shown that the less chromatic number does not necessarily lead to a better interference coordination. Under the propagation environment assumed in this paper, the best chromatic number which maximizes the achievable link capacity is shown to be 4.","PeriodicalId":299827,"journal":{"name":"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reinforcement Learning-based Interference Coordination for Distributed MU-MIMO\",\"authors\":\"Chang Ge, Sijie Xia, Qiang Chen, F. Adachi\",\"doi\":\"10.1109/wpmc52694.2021.9700445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous studies, we proposed a graph coloring algorithm (GCA) based on heuristics to solve the interference coordination problem for distributed multi-user multi-input multi-output (MU-MIMO). In this paper, along with the recent advances of machine learning, we propose a reinforcement learning (RL) based GCA for cluster-wise distributed MU-MIMO. The computer simulation confirms that our newly proposed RL-GCA can significantly improve the downlink link capacity compared with other non-intelligent GCAs. Also, an interesting conclusion has been obtained in terms of chromatic number (required minimum number of colors). It is shown that the less chromatic number does not necessarily lead to a better interference coordination. Under the propagation environment assumed in this paper, the best chromatic number which maximizes the achievable link capacity is shown to be 4.\",\"PeriodicalId\":299827,\"journal\":{\"name\":\"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wpmc52694.2021.9700445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wpmc52694.2021.9700445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在以往的研究中,我们提出了一种基于启发式的图着色算法(GCA)来解决分布式多用户多输入多输出(MU-MIMO)的干扰协调问题。在本文中,随着机器学习的最新进展,我们提出了一种基于强化学习(RL)的GCA用于集群智能分布式MU-MIMO。计算机仿真证实,与其他非智能gca相比,我们提出的RL-GCA可以显著提高下行链路容量。此外,在色数(所需的最小颜色数)方面得到了一个有趣的结论。结果表明,色数越少,干涉配位效果不一定越好。在本文假设的传播环境下,最大可达链路容量的最佳色数为4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning-based Interference Coordination for Distributed MU-MIMO
In our previous studies, we proposed a graph coloring algorithm (GCA) based on heuristics to solve the interference coordination problem for distributed multi-user multi-input multi-output (MU-MIMO). In this paper, along with the recent advances of machine learning, we propose a reinforcement learning (RL) based GCA for cluster-wise distributed MU-MIMO. The computer simulation confirms that our newly proposed RL-GCA can significantly improve the downlink link capacity compared with other non-intelligent GCAs. Also, an interesting conclusion has been obtained in terms of chromatic number (required minimum number of colors). It is shown that the less chromatic number does not necessarily lead to a better interference coordination. Under the propagation environment assumed in this paper, the best chromatic number which maximizes the achievable link capacity is shown to be 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信