{"title":"增强主循环-显著改善蒸汽朗肯循环","authors":"S. Głuch, M. Piwowarski","doi":"10.21495/71-0-125","DOIUrl":null,"url":null,"abstract":"The present paper focuses on an enhancement of the Master Cycle. In the first part, the paper presents a classical Master Cycle which is a modification of the double reheat Rankine cycle. This modification allows to slightly increase efficiency, resolves problems caused by superheated steam on bleeds and decreases mass flow rate of steam directed to reheat. These improvements include the implementation of a tuning turbine from which a few bleeds are taken. In the proposed Enhanced Master Cycle all bleeds are placed on the tuning turbine. This alteration results in an increased efficiency, further reduction of steam mass flow on reheats and simplification of low pressure turbine. Comparative calculations of the double reheat cycle, Master Cycle and Enhanced Master Cycle are presented. Cycles operate on the advanced ultra-supercritical parameters. The Enhanced Master Cycle achieved the highest net efficiency 54.64% and required the lowest steam mass flow on superheaters.","PeriodicalId":197313,"journal":{"name":"Engineering Mechanics 2019","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ENHANCED MASTER CYCLE - SIGNIFICANT IMPROVEMENT OF STEAM RANKINE CYCLE\",\"authors\":\"S. Głuch, M. Piwowarski\",\"doi\":\"10.21495/71-0-125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper focuses on an enhancement of the Master Cycle. In the first part, the paper presents a classical Master Cycle which is a modification of the double reheat Rankine cycle. This modification allows to slightly increase efficiency, resolves problems caused by superheated steam on bleeds and decreases mass flow rate of steam directed to reheat. These improvements include the implementation of a tuning turbine from which a few bleeds are taken. In the proposed Enhanced Master Cycle all bleeds are placed on the tuning turbine. This alteration results in an increased efficiency, further reduction of steam mass flow on reheats and simplification of low pressure turbine. Comparative calculations of the double reheat cycle, Master Cycle and Enhanced Master Cycle are presented. Cycles operate on the advanced ultra-supercritical parameters. The Enhanced Master Cycle achieved the highest net efficiency 54.64% and required the lowest steam mass flow on superheaters.\",\"PeriodicalId\":197313,\"journal\":{\"name\":\"Engineering Mechanics 2019\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Mechanics 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21495/71-0-125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Mechanics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21495/71-0-125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ENHANCED MASTER CYCLE - SIGNIFICANT IMPROVEMENT OF STEAM RANKINE CYCLE
The present paper focuses on an enhancement of the Master Cycle. In the first part, the paper presents a classical Master Cycle which is a modification of the double reheat Rankine cycle. This modification allows to slightly increase efficiency, resolves problems caused by superheated steam on bleeds and decreases mass flow rate of steam directed to reheat. These improvements include the implementation of a tuning turbine from which a few bleeds are taken. In the proposed Enhanced Master Cycle all bleeds are placed on the tuning turbine. This alteration results in an increased efficiency, further reduction of steam mass flow on reheats and simplification of low pressure turbine. Comparative calculations of the double reheat cycle, Master Cycle and Enhanced Master Cycle are presented. Cycles operate on the advanced ultra-supercritical parameters. The Enhanced Master Cycle achieved the highest net efficiency 54.64% and required the lowest steam mass flow on superheaters.