基于子整体PCA的人脸识别

Muhammad Murtaza Khan, M. Y. Javed, M. A. Anjum
{"title":"基于子整体PCA的人脸识别","authors":"Muhammad Murtaza Khan, M. Y. Javed, M. A. Anjum","doi":"10.1109/ICICT.2005.1598573","DOIUrl":null,"url":null,"abstract":"This paper proposes a face recognition scheme that enhances the correct face recognition rate as compared to conventional Principal Component Analysis (PCA). The proposed scheme, Sub-Holistic PCA (SH-PCA), was tested using ORL database and out performed PCA for all test scenarios. SH-PCA requires more computational power and memory as compared to PCA however it yields an improvement of 6% correct recognition on the complete ORL database of 400 images. The correct recognition rate for the complete ORL database is 90% for the SH-PCA technique.","PeriodicalId":276741,"journal":{"name":"2005 International Conference on Information and Communication Technologies","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Face Recognition using Sub-Holistic PCA\",\"authors\":\"Muhammad Murtaza Khan, M. Y. Javed, M. A. Anjum\",\"doi\":\"10.1109/ICICT.2005.1598573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a face recognition scheme that enhances the correct face recognition rate as compared to conventional Principal Component Analysis (PCA). The proposed scheme, Sub-Holistic PCA (SH-PCA), was tested using ORL database and out performed PCA for all test scenarios. SH-PCA requires more computational power and memory as compared to PCA however it yields an improvement of 6% correct recognition on the complete ORL database of 400 images. The correct recognition rate for the complete ORL database is 90% for the SH-PCA technique.\",\"PeriodicalId\":276741,\"journal\":{\"name\":\"2005 International Conference on Information and Communication Technologies\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2005.1598573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2005.1598573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种人脸识别方案,与传统的主成分分析(PCA)相比,该方案提高了人脸识别率。采用ORL数据库对所提出的亚整体主成分分析(SH-PCA)方案进行了测试,并对所有测试场景进行了主成分分析。与PCA相比,SH-PCA需要更多的计算能力和内存,但它在包含400张图像的完整ORL数据库上的识别率提高了6%。SH-PCA技术对完整ORL数据库的正确识别率为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition using Sub-Holistic PCA
This paper proposes a face recognition scheme that enhances the correct face recognition rate as compared to conventional Principal Component Analysis (PCA). The proposed scheme, Sub-Holistic PCA (SH-PCA), was tested using ORL database and out performed PCA for all test scenarios. SH-PCA requires more computational power and memory as compared to PCA however it yields an improvement of 6% correct recognition on the complete ORL database of 400 images. The correct recognition rate for the complete ORL database is 90% for the SH-PCA technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信