基于小波的EM-MAP算法的多频带OFDM UWB信道估计

S. Sadough, M. Ichir, E. Jaffrot, P. Duhamel
{"title":"基于小波的EM-MAP算法的多频带OFDM UWB信道估计","authors":"S. Sadough, M. Ichir, E. Jaffrot, P. Duhamel","doi":"10.1109/SPAWC.2006.346343","DOIUrl":null,"url":null,"abstract":"This paper introduces an expectation-maximization (EM) algorithm within a wavelet domain Bayesian framework for semi-blind channel estimation of multiband OFDM based UWB communications. A prior distribution is chosen for the wavelet coefficients of the unknown channel impulse response, in order to capture the well known sparseness property of the wavelet representation. This prior yields, in maximum a posteriori estimation, a thresholding rule within the EM algorithm. We particularly focus on reducing the number of estimated parameters by iteratively discarding \"unsignificant\" wavelet coefficients from the estimation process. In addition, the proposed algorithm enhances the estimation accuracy in terms of mean square error with less computational complexity than traditional semi-blind methods. Simulation results using IEEE UWB channel models show that the proposed algorithm outperforms pilot based channel estimation in terms of mean square error and bit error rate","PeriodicalId":414942,"journal":{"name":"2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multiband OFDM UWB Channel Estimation Via a Wavelet Based EM-MAP Algorithm\",\"authors\":\"S. Sadough, M. Ichir, E. Jaffrot, P. Duhamel\",\"doi\":\"10.1109/SPAWC.2006.346343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an expectation-maximization (EM) algorithm within a wavelet domain Bayesian framework for semi-blind channel estimation of multiband OFDM based UWB communications. A prior distribution is chosen for the wavelet coefficients of the unknown channel impulse response, in order to capture the well known sparseness property of the wavelet representation. This prior yields, in maximum a posteriori estimation, a thresholding rule within the EM algorithm. We particularly focus on reducing the number of estimated parameters by iteratively discarding \\\"unsignificant\\\" wavelet coefficients from the estimation process. In addition, the proposed algorithm enhances the estimation accuracy in terms of mean square error with less computational complexity than traditional semi-blind methods. Simulation results using IEEE UWB channel models show that the proposed algorithm outperforms pilot based channel estimation in terms of mean square error and bit error rate\",\"PeriodicalId\":414942,\"journal\":{\"name\":\"2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2006.346343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2006.346343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

介绍了一种基于小波域贝叶斯框架的期望最大化算法,用于基于OFDM的UWB通信半盲信道估计。对于未知信道脉冲响应的小波系数选择一个先验分布,以捕捉小波表示的稀疏性。在最大的后验估计中,这种先验产生了EM算法中的阈值规则。我们特别关注通过迭代地从估计过程中丢弃“不显著”的小波系数来减少估计参数的数量。此外,该算法在均方误差方面提高了估计精度,且计算复杂度低于传统的半盲方法。利用IEEE超宽带信道模型进行的仿真结果表明,该算法在均方误差和误码率方面优于基于导频的信道估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiband OFDM UWB Channel Estimation Via a Wavelet Based EM-MAP Algorithm
This paper introduces an expectation-maximization (EM) algorithm within a wavelet domain Bayesian framework for semi-blind channel estimation of multiband OFDM based UWB communications. A prior distribution is chosen for the wavelet coefficients of the unknown channel impulse response, in order to capture the well known sparseness property of the wavelet representation. This prior yields, in maximum a posteriori estimation, a thresholding rule within the EM algorithm. We particularly focus on reducing the number of estimated parameters by iteratively discarding "unsignificant" wavelet coefficients from the estimation process. In addition, the proposed algorithm enhances the estimation accuracy in terms of mean square error with less computational complexity than traditional semi-blind methods. Simulation results using IEEE UWB channel models show that the proposed algorithm outperforms pilot based channel estimation in terms of mean square error and bit error rate
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信