时域商用GPR天线远场分层介质建模评价

M. R. Mahmoudzadeh, K. Jadoon, S. Lambot
{"title":"时域商用GPR天线远场分层介质建模评价","authors":"M. R. Mahmoudzadeh, K. Jadoon, S. Lambot","doi":"10.1109/IWAGPR.2011.5963898","DOIUrl":null,"url":null,"abstract":"The possibility to estimate accurately the subsurface electromagnetic properties from commercial ground penetrating radar (GPR) signals using inverse modeling is obstructed by the appropriateness of the forward model describing the GPR subsurface system. In 2004 Lambot et al. proposed a promising GPR model for multilayered media characterization based on frequency-domain subsurface Green's functions and antenna effects filtering by linear transfer functions. In this study we analyzed the feasibility of full-waveform frequency-domain modeling for off-ground time-domain commercial GPR. We calculated the antenna transfer functions using measurements with a 1 GHz center frequency transmitting and receiving horn antenna situated at different heights above a copper plane. Also we validated the approach in the laboratory with measurements performed over the water as a homogeneous medium with frequency dependent electrical properties. A single Debye relaxation model was used to describe the frequency dependent water electrical properties with correcting the relaxation period and static dielectric permittivity of water for temperature. Inversion of the radar data in the frequency-domain provided relatively accurate estimations of the antenna heights and water layer thickness. These results demonstrated the ability of full-waveform modeling to be also used for commercial time-domain radars.","PeriodicalId":130006,"journal":{"name":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of far-field layered media modeling for time-domain commercial GPR antenna\",\"authors\":\"M. R. Mahmoudzadeh, K. Jadoon, S. Lambot\",\"doi\":\"10.1109/IWAGPR.2011.5963898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibility to estimate accurately the subsurface electromagnetic properties from commercial ground penetrating radar (GPR) signals using inverse modeling is obstructed by the appropriateness of the forward model describing the GPR subsurface system. In 2004 Lambot et al. proposed a promising GPR model for multilayered media characterization based on frequency-domain subsurface Green's functions and antenna effects filtering by linear transfer functions. In this study we analyzed the feasibility of full-waveform frequency-domain modeling for off-ground time-domain commercial GPR. We calculated the antenna transfer functions using measurements with a 1 GHz center frequency transmitting and receiving horn antenna situated at different heights above a copper plane. Also we validated the approach in the laboratory with measurements performed over the water as a homogeneous medium with frequency dependent electrical properties. A single Debye relaxation model was used to describe the frequency dependent water electrical properties with correcting the relaxation period and static dielectric permittivity of water for temperature. Inversion of the radar data in the frequency-domain provided relatively accurate estimations of the antenna heights and water layer thickness. These results demonstrated the ability of full-waveform modeling to be also used for commercial time-domain radars.\",\"PeriodicalId\":130006,\"journal\":{\"name\":\"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAGPR.2011.5963898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2011.5963898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用商业探地雷达(GPR)信号的反演模型准确估计地下电磁特性的可能性受到描述GPR地下系统的正演模型的适用性的阻碍。2004年Lambot等人提出了一种基于频域地下格林函数和线性传递函数滤波天线效应的多层介质表征的GPR模型。本文分析了商用探地雷达离地时域全波形频域建模的可行性。我们通过测量位于铜平面上方不同高度的1 GHz中心频率发射和接收喇叭天线来计算天线传递函数。此外,我们还在实验室中验证了该方法,将水作为具有频率相关电学特性的均匀介质进行测量。采用单Debye弛豫模型来描述随温度变化的水的弛豫周期和静态介电常数随频率变化的水的电性质。雷达数据的频域反演提供了相对准确的天线高度和水层厚度估计。这些结果表明,全波形建模也可用于商用时域雷达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of far-field layered media modeling for time-domain commercial GPR antenna
The possibility to estimate accurately the subsurface electromagnetic properties from commercial ground penetrating radar (GPR) signals using inverse modeling is obstructed by the appropriateness of the forward model describing the GPR subsurface system. In 2004 Lambot et al. proposed a promising GPR model for multilayered media characterization based on frequency-domain subsurface Green's functions and antenna effects filtering by linear transfer functions. In this study we analyzed the feasibility of full-waveform frequency-domain modeling for off-ground time-domain commercial GPR. We calculated the antenna transfer functions using measurements with a 1 GHz center frequency transmitting and receiving horn antenna situated at different heights above a copper plane. Also we validated the approach in the laboratory with measurements performed over the water as a homogeneous medium with frequency dependent electrical properties. A single Debye relaxation model was used to describe the frequency dependent water electrical properties with correcting the relaxation period and static dielectric permittivity of water for temperature. Inversion of the radar data in the frequency-domain provided relatively accurate estimations of the antenna heights and water layer thickness. These results demonstrated the ability of full-waveform modeling to be also used for commercial time-domain radars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信