从浸入式圆盘到封盖式圆盘

Wojciech Politarczyk, Mark Powell, Arunima Ray
{"title":"从浸入式圆盘到封盖式圆盘","authors":"Wojciech Politarczyk, Mark Powell, Arunima Ray","doi":"10.1093/oso/9780198841319.003.0016","DOIUrl":null,"url":null,"abstract":"‘From Immersed Discs to Capped Gropes’ begins the proof of the disc embedding theorem in earnest. Starting with the immersed discs provided by the hypotheses of the disc embedding theorem, capped gropes with the same boundary and with suitable dual gropes are produced. This uses a sequence of the geometric moves introduced in the previous chapter. The two propositions in this chapter are technical, but vital. In subsequent chapters, the capped gropes will be upgraded to capped towers, and then to skyscrapers. The final step of the proof will consist of showing that skyscrapers are homeomorphic to the standard 2-handle, relative to the attaching region.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Immersed Discs to Capped Gropes\",\"authors\":\"Wojciech Politarczyk, Mark Powell, Arunima Ray\",\"doi\":\"10.1093/oso/9780198841319.003.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘From Immersed Discs to Capped Gropes’ begins the proof of the disc embedding theorem in earnest. Starting with the immersed discs provided by the hypotheses of the disc embedding theorem, capped gropes with the same boundary and with suitable dual gropes are produced. This uses a sequence of the geometric moves introduced in the previous chapter. The two propositions in this chapter are technical, but vital. In subsequent chapters, the capped gropes will be upgraded to capped towers, and then to skyscrapers. The final step of the proof will consist of showing that skyscrapers are homeomorphic to the standard 2-handle, relative to the attaching region.\",\"PeriodicalId\":272723,\"journal\":{\"name\":\"The Disc Embedding Theorem\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Disc Embedding Theorem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198841319.003.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

《从浸入式圆盘到封盖式圆盘》正式开始了圆盘嵌入定理的证明。从圆盘嵌入定理的假设提供的浸没圆盘出发,得到了具有相同边界和合适对偶曲线的封顶曲线。这使用了前一章中介绍的一系列几何移动。本章中的两个命题是技术性的,但却是至关重要的。在随后的章节中,被封顶的地皮将升级为封顶的塔,然后升级为摩天大楼。证明的最后一步将包括证明摩天大楼是同胚的标准2-柄,相对于附加区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Immersed Discs to Capped Gropes
‘From Immersed Discs to Capped Gropes’ begins the proof of the disc embedding theorem in earnest. Starting with the immersed discs provided by the hypotheses of the disc embedding theorem, capped gropes with the same boundary and with suitable dual gropes are produced. This uses a sequence of the geometric moves introduced in the previous chapter. The two propositions in this chapter are technical, but vital. In subsequent chapters, the capped gropes will be upgraded to capped towers, and then to skyscrapers. The final step of the proof will consist of showing that skyscrapers are homeomorphic to the standard 2-handle, relative to the attaching region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信