使用数据挖掘技术的视频拷贝帧检测

K. Girija, R. Maheswaran, P. Sabarinathan
{"title":"使用数据挖掘技术的视频拷贝帧检测","authors":"K. Girija, R. Maheswaran, P. Sabarinathan","doi":"10.1109/ICCPEIC.2014.6915398","DOIUrl":null,"url":null,"abstract":"There are a number of methods available for video copy detection. Some of the methods were employing the application of local and global descriptors which were found to be ineffective in detections involving complex transformations. In order to overcome the above specified inefficiency, Scale Invariant Feature Transform (SIFT) descriptor came into picture but was found to have a high computational cost. The method proposed in this paper involving five different types of MPEG-7 descriptors namely Color and Edge Directivity Descriptor (CEDD), Fuzzy Color and Texture Histogram (FCTH), Scalable Color Descriptor (SCD), Edge Histogram Descriptor (EHD), Color Layout Descriptor (CLD) for extracting the features of the frames in the selected video is found to be cost effective and efficient even in case of high level of transformations. This paper also throws light on certain improvements in graph-based video sequence matching method which is used to overcome the level of noise, to detect videos with different frame rates and optimal sequence matching is found automatically from the disordered video sequences by applying spatial features during copy detection. Experimental results have showed that the proposed method is far effective than the previously existing video detection scenarios.","PeriodicalId":176197,"journal":{"name":"2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Copy frame detection in video using data mining techniques\",\"authors\":\"K. Girija, R. Maheswaran, P. Sabarinathan\",\"doi\":\"10.1109/ICCPEIC.2014.6915398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a number of methods available for video copy detection. Some of the methods were employing the application of local and global descriptors which were found to be ineffective in detections involving complex transformations. In order to overcome the above specified inefficiency, Scale Invariant Feature Transform (SIFT) descriptor came into picture but was found to have a high computational cost. The method proposed in this paper involving five different types of MPEG-7 descriptors namely Color and Edge Directivity Descriptor (CEDD), Fuzzy Color and Texture Histogram (FCTH), Scalable Color Descriptor (SCD), Edge Histogram Descriptor (EHD), Color Layout Descriptor (CLD) for extracting the features of the frames in the selected video is found to be cost effective and efficient even in case of high level of transformations. This paper also throws light on certain improvements in graph-based video sequence matching method which is used to overcome the level of noise, to detect videos with different frame rates and optimal sequence matching is found automatically from the disordered video sequences by applying spatial features during copy detection. Experimental results have showed that the proposed method is far effective than the previously existing video detection scenarios.\",\"PeriodicalId\":176197,\"journal\":{\"name\":\"2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPEIC.2014.6915398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPEIC.2014.6915398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

有许多方法可用于视频复制检测。一些方法采用局部和全局描述符的应用,这些描述符在涉及复杂变换的检测中被发现是无效的。为了克服上述低效率问题,尺度不变特征变换(SIFT)描述子应运而生,但其计算成本较高。本文提出的方法涉及五种不同类型的MPEG-7描述符,即颜色和边缘指向性描述符(CEDD),模糊颜色和纹理直方图(FCTH),可缩放颜色描述符(SCD),边缘直方图描述符(EHD),颜色布局描述符(CLD),用于提取所选视频中帧的特征,即使在高级别转换的情况下也是经济有效的。本文还对基于图的视频序列匹配方法进行了一定的改进,该方法用于克服噪声水平,检测不同帧率的视频,并在复制检测过程中利用空间特征从无序的视频序列中自动找到最优的序列匹配。实验结果表明,该方法远比现有的视频检测场景有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copy frame detection in video using data mining techniques
There are a number of methods available for video copy detection. Some of the methods were employing the application of local and global descriptors which were found to be ineffective in detections involving complex transformations. In order to overcome the above specified inefficiency, Scale Invariant Feature Transform (SIFT) descriptor came into picture but was found to have a high computational cost. The method proposed in this paper involving five different types of MPEG-7 descriptors namely Color and Edge Directivity Descriptor (CEDD), Fuzzy Color and Texture Histogram (FCTH), Scalable Color Descriptor (SCD), Edge Histogram Descriptor (EHD), Color Layout Descriptor (CLD) for extracting the features of the frames in the selected video is found to be cost effective and efficient even in case of high level of transformations. This paper also throws light on certain improvements in graph-based video sequence matching method which is used to overcome the level of noise, to detect videos with different frame rates and optimal sequence matching is found automatically from the disordered video sequences by applying spatial features during copy detection. Experimental results have showed that the proposed method is far effective than the previously existing video detection scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信