疏浚

Andrew McCrabb, Eric Winsor, V. Bertacco
{"title":"疏浚","authors":"Andrew McCrabb, Eric Winsor, V. Bertacco","doi":"10.1145/3316781.3317804","DOIUrl":null,"url":null,"abstract":"Graph-based algorithms have gained significant interest in several application domains. Solutions addressing the computational efficiency of such algorithms have mostly relied on many-core architectures. Cleverly laying out input graphs in storage, by placing adjacent vertices in a same storage unit (memory bank or cache unit), enables fast access during graph traversal. Dynamic graphs, however, must be continuously repartitioned to leverage this benefit. Yet software repartitioning solutions rely on costly, cross-vault communication to query and optimize the graph layout between algorithm iterations. In this work, we propose DREDGE, a novel hardware solution to provide heuristic repartitioning optimizations in the background without extra communication. Our evaluation indicates that we achieve a $1.9 x$ speedup, on average, over several graph algorithms and datasets, executing on a 24x24-core architecture, when compared against a baseline solution that does not repartition the dynamic graph. We estimated that DREDGE incurs only 1.5% area and 2.1% power overheads over an ARM A5 processor core. CCS CONCEPTS • Hardware $\\rightarrow$ Hardware accelerators; Application specific processors; • Mathematics of computing $\\rightarrow$ Graph theory;","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"DREDGE\",\"authors\":\"Andrew McCrabb, Eric Winsor, V. Bertacco\",\"doi\":\"10.1145/3316781.3317804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph-based algorithms have gained significant interest in several application domains. Solutions addressing the computational efficiency of such algorithms have mostly relied on many-core architectures. Cleverly laying out input graphs in storage, by placing adjacent vertices in a same storage unit (memory bank or cache unit), enables fast access during graph traversal. Dynamic graphs, however, must be continuously repartitioned to leverage this benefit. Yet software repartitioning solutions rely on costly, cross-vault communication to query and optimize the graph layout between algorithm iterations. In this work, we propose DREDGE, a novel hardware solution to provide heuristic repartitioning optimizations in the background without extra communication. Our evaluation indicates that we achieve a $1.9 x$ speedup, on average, over several graph algorithms and datasets, executing on a 24x24-core architecture, when compared against a baseline solution that does not repartition the dynamic graph. We estimated that DREDGE incurs only 1.5% area and 2.1% power overheads over an ARM A5 processor core. CCS CONCEPTS • Hardware $\\\\rightarrow$ Hardware accelerators; Application specific processors; • Mathematics of computing $\\\\rightarrow$ Graph theory;\",\"PeriodicalId\":391209,\"journal\":{\"name\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316781.3317804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
DREDGE
Graph-based algorithms have gained significant interest in several application domains. Solutions addressing the computational efficiency of such algorithms have mostly relied on many-core architectures. Cleverly laying out input graphs in storage, by placing adjacent vertices in a same storage unit (memory bank or cache unit), enables fast access during graph traversal. Dynamic graphs, however, must be continuously repartitioned to leverage this benefit. Yet software repartitioning solutions rely on costly, cross-vault communication to query and optimize the graph layout between algorithm iterations. In this work, we propose DREDGE, a novel hardware solution to provide heuristic repartitioning optimizations in the background without extra communication. Our evaluation indicates that we achieve a $1.9 x$ speedup, on average, over several graph algorithms and datasets, executing on a 24x24-core architecture, when compared against a baseline solution that does not repartition the dynamic graph. We estimated that DREDGE incurs only 1.5% area and 2.1% power overheads over an ARM A5 processor core. CCS CONCEPTS • Hardware $\rightarrow$ Hardware accelerators; Application specific processors; • Mathematics of computing $\rightarrow$ Graph theory;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信