Daniele Buono, M. Danelutto, Silvia Lametti, M. Torquati
{"title":"通用多核并行模式","authors":"Daniele Buono, M. Danelutto, Silvia Lametti, M. Torquati","doi":"10.1109/PDP.2013.27","DOIUrl":null,"url":null,"abstract":"Efficient programming of general purpose many-core accelerators poses several challenging problems. The high number of cores available, the peculiarity of the interconnection network, and the complex memory hierarchy organization, all contribute to make efficient programming of such devices difficult. We propose to use parallel design patterns, implemented using algorithmic skeletons, to abstract and hide most of the difficulties related to the efficient programming of many-core accelerators. In particular, we discuss the porting of the FastFlow framework on the Tilera TilePro64 architecture and the results obtained running synthetic benchmarks as well as true application kernels. These results demonstrate the efficiency achieved while using patterns on the TilePro64 both to program stand-alone skeleton-based parallel applications and to accelerate existing sequential code.","PeriodicalId":202977,"journal":{"name":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Parallel Patterns for General Purpose Many-Core\",\"authors\":\"Daniele Buono, M. Danelutto, Silvia Lametti, M. Torquati\",\"doi\":\"10.1109/PDP.2013.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient programming of general purpose many-core accelerators poses several challenging problems. The high number of cores available, the peculiarity of the interconnection network, and the complex memory hierarchy organization, all contribute to make efficient programming of such devices difficult. We propose to use parallel design patterns, implemented using algorithmic skeletons, to abstract and hide most of the difficulties related to the efficient programming of many-core accelerators. In particular, we discuss the porting of the FastFlow framework on the Tilera TilePro64 architecture and the results obtained running synthetic benchmarks as well as true application kernels. These results demonstrate the efficiency achieved while using patterns on the TilePro64 both to program stand-alone skeleton-based parallel applications and to accelerate existing sequential code.\",\"PeriodicalId\":202977,\"journal\":{\"name\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2013.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2013.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient programming of general purpose many-core accelerators poses several challenging problems. The high number of cores available, the peculiarity of the interconnection network, and the complex memory hierarchy organization, all contribute to make efficient programming of such devices difficult. We propose to use parallel design patterns, implemented using algorithmic skeletons, to abstract and hide most of the difficulties related to the efficient programming of many-core accelerators. In particular, we discuss the porting of the FastFlow framework on the Tilera TilePro64 architecture and the results obtained running synthetic benchmarks as well as true application kernels. These results demonstrate the efficiency achieved while using patterns on the TilePro64 both to program stand-alone skeleton-based parallel applications and to accelerate existing sequential code.