发现Web上的实体关系

Wei Yu, Junpeng Chen, Guoying Yu
{"title":"发现Web上的实体关系","authors":"Wei Yu, Junpeng Chen, Guoying Yu","doi":"10.1109/ICSC.2008.16","DOIUrl":null,"url":null,"abstract":"Mining entities relationships on the Web is a crucial problem for many data analysis work. We propose a new method to discover the relationships between two entities on the Web and designed an entities relationships miner prototype ERM, where the relationships can be mined in different granularities and the related Web pages containing the connections between two entities are returned in ranked order. Our experimental results show that ERM provides an efficient yet effective way for the user to discover the entities relationships on the Web.","PeriodicalId":102805,"journal":{"name":"2008 IEEE International Conference on Semantic Computing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discovering Entities Relationships on the Web\",\"authors\":\"Wei Yu, Junpeng Chen, Guoying Yu\",\"doi\":\"10.1109/ICSC.2008.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining entities relationships on the Web is a crucial problem for many data analysis work. We propose a new method to discover the relationships between two entities on the Web and designed an entities relationships miner prototype ERM, where the relationships can be mined in different granularities and the related Web pages containing the connections between two entities are returned in ranked order. Our experimental results show that ERM provides an efficient yet effective way for the user to discover the entities relationships on the Web.\",\"PeriodicalId\":102805,\"journal\":{\"name\":\"2008 IEEE International Conference on Semantic Computing\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2008.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2008.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

挖掘Web上的实体关系是许多数据分析工作的关键问题。我们提出了一种新的方法来发现Web上两个实体之间的关系,并设计了一个实体关系挖掘原型ERM,该原型ERM可以按不同粒度挖掘实体之间的关系,并按顺序返回包含两个实体之间连接的相关Web页面。实验结果表明,ERM为用户发现Web上的实体关系提供了一种高效而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Entities Relationships on the Web
Mining entities relationships on the Web is a crucial problem for many data analysis work. We propose a new method to discover the relationships between two entities on the Web and designed an entities relationships miner prototype ERM, where the relationships can be mined in different granularities and the related Web pages containing the connections between two entities are returned in ranked order. Our experimental results show that ERM provides an efficient yet effective way for the user to discover the entities relationships on the Web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信