利用新规则矩对伸长和收缩图像进行分类

P. Raveendran, S. Jegannathan, S. Omatu
{"title":"利用新规则矩对伸长和收缩图像进行分类","authors":"P. Raveendran, S. Jegannathan, S. Omatu","doi":"10.1109/ICNN.1994.374880","DOIUrl":null,"url":null,"abstract":"This paper presents a technique to classify images that have been elongated or contracted. The problem is formulated using conventional regular moments. It is shown that the conventional regular moment-invariants remain no longer invariant when the image is scaled unequally in the x- and y-directions. A method is proposed to form moment-invariants that do not change under such unequal scaling. Results of computer simulations for images are also included verifying the validity of the method proposed.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Classification of elongated and contracted images using new regular moments\",\"authors\":\"P. Raveendran, S. Jegannathan, S. Omatu\",\"doi\":\"10.1109/ICNN.1994.374880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a technique to classify images that have been elongated or contracted. The problem is formulated using conventional regular moments. It is shown that the conventional regular moment-invariants remain no longer invariant when the image is scaled unequally in the x- and y-directions. A method is proposed to form moment-invariants that do not change under such unequal scaling. Results of computer simulations for images are also included verifying the validity of the method proposed.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种对被拉长或收缩的图像进行分类的技术。这个问题是用常规矩来表述的。结果表明,当图像在x和y方向上进行不相等缩放时,常规矩不变量不再保持不变。提出了一种在这种不等尺度下形成不变矩的方法。计算机图像仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of elongated and contracted images using new regular moments
This paper presents a technique to classify images that have been elongated or contracted. The problem is formulated using conventional regular moments. It is shown that the conventional regular moment-invariants remain no longer invariant when the image is scaled unequally in the x- and y-directions. A method is proposed to form moment-invariants that do not change under such unequal scaling. Results of computer simulations for images are also included verifying the validity of the method proposed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信