一类QC-LDPC码的可逆循环矩阵

M. Baldi, F. Bambozzi, F. Chiaraluce
{"title":"一类QC-LDPC码的可逆循环矩阵","authors":"M. Baldi, F. Bambozzi, F. Chiaraluce","doi":"10.1109/ISITA.2008.4895413","DOIUrl":null,"url":null,"abstract":"This paper presents a new class of easily invertible circulant matrices, defined by exploiting the isomorphism from the ring Mn of n times n circulant matrices over GF(p) to the ring Rn = GF(p)[x]/(xn - 1) of the polynomials modulo (xn - 1). Such class contains matrices free of 4-length cycles that, if sparse, can be included in the parity check matrix of QC-LDPC codes. Bounds for the weight of their inverses are also determined, that are useful for designing sparse generator matrices for these error correcting codes.","PeriodicalId":338675,"journal":{"name":"2008 International Symposium on Information Theory and Its Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A class of invertible circulant matrices for QC-LDPC codes\",\"authors\":\"M. Baldi, F. Bambozzi, F. Chiaraluce\",\"doi\":\"10.1109/ISITA.2008.4895413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new class of easily invertible circulant matrices, defined by exploiting the isomorphism from the ring Mn of n times n circulant matrices over GF(p) to the ring Rn = GF(p)[x]/(xn - 1) of the polynomials modulo (xn - 1). Such class contains matrices free of 4-length cycles that, if sparse, can be included in the parity check matrix of QC-LDPC codes. Bounds for the weight of their inverses are also determined, that are useful for designing sparse generator matrices for these error correcting codes.\",\"PeriodicalId\":338675,\"journal\":{\"name\":\"2008 International Symposium on Information Theory and Its Applications\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Information Theory and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITA.2008.4895413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITA.2008.4895413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用GF(p)上n乘以n个循环矩阵的环Mn到多项式模(xn - 1)的环Rn = GF(p)[x]/(xn - 1)的同构性,给出了一类新的易可逆循环矩阵。该类包含不含4长度循环的矩阵,如果稀疏,可以包含在QC-LDPC码的奇偶校验矩阵中。还确定了它们的逆权值的界,这对设计这些纠错码的稀疏生成器矩阵很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of invertible circulant matrices for QC-LDPC codes
This paper presents a new class of easily invertible circulant matrices, defined by exploiting the isomorphism from the ring Mn of n times n circulant matrices over GF(p) to the ring Rn = GF(p)[x]/(xn - 1) of the polynomials modulo (xn - 1). Such class contains matrices free of 4-length cycles that, if sparse, can be included in the parity check matrix of QC-LDPC codes. Bounds for the weight of their inverses are also determined, that are useful for designing sparse generator matrices for these error correcting codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信