FuzzyCN2:一种提取模糊分类规则列表的算法

Pablo Martín-Muñóz, F. J. Moreno-Velo
{"title":"FuzzyCN2:一种提取模糊分类规则列表的算法","authors":"Pablo Martín-Muñóz, F. J. Moreno-Velo","doi":"10.1109/FUZZY.2010.5584192","DOIUrl":null,"url":null,"abstract":"Most of the algorithms for extracting fuzzy classification rules generate conjunctive antecedents that use all the attributes of the system. Using this kind of antecedents, the number of rules grows exponentially in terms of the number of attributes of the system. This paper presents a new algorithm, FuzzyCN2, for extracting conjunctive fuzzy classification rules. This algorithm is a fuzzy version of the well known CN2 algorithm and produces an ordered list of fuzzy rules. FuzzyCN2 generates antecedents that may not include all the attributes of the system. These antecedents may cover a wide number of instances and, so, the number of extracted rules is smaller. The algorithm introduces the use of linguistic hedges as part of the selectors, thus producing more compact rules and reducing the number of generated rules.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"FuzzyCN2: An algorithm for extracting fuzzy classification rule lists\",\"authors\":\"Pablo Martín-Muñóz, F. J. Moreno-Velo\",\"doi\":\"10.1109/FUZZY.2010.5584192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the algorithms for extracting fuzzy classification rules generate conjunctive antecedents that use all the attributes of the system. Using this kind of antecedents, the number of rules grows exponentially in terms of the number of attributes of the system. This paper presents a new algorithm, FuzzyCN2, for extracting conjunctive fuzzy classification rules. This algorithm is a fuzzy version of the well known CN2 algorithm and produces an ordered list of fuzzy rules. FuzzyCN2 generates antecedents that may not include all the attributes of the system. These antecedents may cover a wide number of instances and, so, the number of extracted rules is smaller. The algorithm introduces the use of linguistic hedges as part of the selectors, thus producing more compact rules and reducing the number of generated rules.\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

大多数提取模糊分类规则的算法都会生成使用系统所有属性的连接先行词。使用这种先行词,规则的数量会随着系统属性的数量呈指数增长。本文提出了一种新的算法FuzzyCN2,用于提取连接模糊分类规则。该算法是众所周知的CN2算法的模糊版本,并产生一个有序的模糊规则列表。FuzzyCN2生成的先行词可能不包括系统的所有属性。这些先行词可能涵盖大量实例,因此提取的规则数量较少。该算法引入了语言模糊限制作为选择器的一部分,从而产生更紧凑的规则并减少生成规则的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FuzzyCN2: An algorithm for extracting fuzzy classification rule lists
Most of the algorithms for extracting fuzzy classification rules generate conjunctive antecedents that use all the attributes of the system. Using this kind of antecedents, the number of rules grows exponentially in terms of the number of attributes of the system. This paper presents a new algorithm, FuzzyCN2, for extracting conjunctive fuzzy classification rules. This algorithm is a fuzzy version of the well known CN2 algorithm and produces an ordered list of fuzzy rules. FuzzyCN2 generates antecedents that may not include all the attributes of the system. These antecedents may cover a wide number of instances and, so, the number of extracted rules is smaller. The algorithm introduces the use of linguistic hedges as part of the selectors, thus producing more compact rules and reducing the number of generated rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信