拟循环码的几何实现

Cristina Martínez Ramírez, Alberto Besana
{"title":"拟循环码的几何实现","authors":"Cristina Martínez Ramírez, Alberto Besana","doi":"10.5772/intechopen.88288","DOIUrl":null,"url":null,"abstract":"We study and enumerate cyclic codes which include generalised Reed-Solomon codes as function field codes. This geometrical approach allows to construct longer codes and to get more information on the parameters defining the codes. We provide a closed formula in terms of Stirling numbers for the number of irreducible polynomials and we relate it with other formulas existing in the literature. Further, we study quasi-cyclic codes as orbit codes in the Grassmannian parameterizing constant dimension codes. In addition, we review Horn ’ s algorithm and apply it to construct classical codes by their defining ideals.","PeriodicalId":184595,"journal":{"name":"Probability, Combinatorics and Control","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Geometrical Realisation of Quasi-Cyclic Codes\",\"authors\":\"Cristina Martínez Ramírez, Alberto Besana\",\"doi\":\"10.5772/intechopen.88288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study and enumerate cyclic codes which include generalised Reed-Solomon codes as function field codes. This geometrical approach allows to construct longer codes and to get more information on the parameters defining the codes. We provide a closed formula in terms of Stirling numbers for the number of irreducible polynomials and we relate it with other formulas existing in the literature. Further, we study quasi-cyclic codes as orbit codes in the Grassmannian parameterizing constant dimension codes. In addition, we review Horn ’ s algorithm and apply it to construct classical codes by their defining ideals.\",\"PeriodicalId\":184595,\"journal\":{\"name\":\"Probability, Combinatorics and Control\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability, Combinatorics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.88288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability, Combinatorics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.88288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究并列举了包含广义Reed-Solomon码作为函数域码的循环码。这种几何方法允许构造更长的代码,并获得有关定义代码的参数的更多信息。我们给出了一个用斯特林数表示不可约多项式个数的封闭公式,并将其与文献中已有的其他公式联系起来。进一步研究了准循环码作为轨道码在格拉斯曼参数化常维码中的应用。此外,我们回顾了霍恩的算法,并将其应用于经典码的定义理想构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Geometrical Realisation of Quasi-Cyclic Codes
We study and enumerate cyclic codes which include generalised Reed-Solomon codes as function field codes. This geometrical approach allows to construct longer codes and to get more information on the parameters defining the codes. We provide a closed formula in terms of Stirling numbers for the number of irreducible polynomials and we relate it with other formulas existing in the literature. Further, we study quasi-cyclic codes as orbit codes in the Grassmannian parameterizing constant dimension codes. In addition, we review Horn ’ s algorithm and apply it to construct classical codes by their defining ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信