CRYSEED:用遗传编程开发的自动8位加密算法

R. Semente, A. Salazar, F. Oliveira
{"title":"CRYSEED:用遗传编程开发的自动8位加密算法","authors":"R. Semente, A. Salazar, F. Oliveira","doi":"10.1109/I2MTC.2014.6860905","DOIUrl":null,"url":null,"abstract":"In this paper a cryptographic algorithm optimized for wireless sensor networks is proposed and developed automatically using the technique of genetic programming. The proposed algorithm, CRYSEED, was developed considering the safety and computational efficiency, important to keep the algorithm fast, thus consuming less energy and increasing the autonomy of embedded networking devices. In genetic programming were used in the fitness function the metrics maximum deviation, irregular deviation and algorithm running time, to find a safe and fast algorithm. CRYSEED algorithm was compared with the AES, showing better performance in all aspects tested.","PeriodicalId":331484,"journal":{"name":"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"CRYSEED: An automatic 8-bit cryptographic algorithm developed with genetic programming\",\"authors\":\"R. Semente, A. Salazar, F. Oliveira\",\"doi\":\"10.1109/I2MTC.2014.6860905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a cryptographic algorithm optimized for wireless sensor networks is proposed and developed automatically using the technique of genetic programming. The proposed algorithm, CRYSEED, was developed considering the safety and computational efficiency, important to keep the algorithm fast, thus consuming less energy and increasing the autonomy of embedded networking devices. In genetic programming were used in the fitness function the metrics maximum deviation, irregular deviation and algorithm running time, to find a safe and fast algorithm. CRYSEED algorithm was compared with the AES, showing better performance in all aspects tested.\",\"PeriodicalId\":331484,\"journal\":{\"name\":\"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2014.6860905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2014.6860905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种无线传感器网络优化的密码算法,并利用遗传规划技术自动开发了该算法。所提出的CRYSEED算法是在考虑安全性和计算效率的基础上开发的,这对于保持算法的快速性非常重要,从而减少了能量消耗并增加了嵌入式网络设备的自主性。在遗传规划中分别采用适应度函数的度量最大偏差、不规则偏差和算法运行时间,寻求一种安全快速的算法。CRYSEED算法与AES算法进行了比较,在测试的各个方面都表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CRYSEED: An automatic 8-bit cryptographic algorithm developed with genetic programming
In this paper a cryptographic algorithm optimized for wireless sensor networks is proposed and developed automatically using the technique of genetic programming. The proposed algorithm, CRYSEED, was developed considering the safety and computational efficiency, important to keep the algorithm fast, thus consuming less energy and increasing the autonomy of embedded networking devices. In genetic programming were used in the fitness function the metrics maximum deviation, irregular deviation and algorithm running time, to find a safe and fast algorithm. CRYSEED algorithm was compared with the AES, showing better performance in all aspects tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信