基于机器学习算法、超声波和颜色传感器的饮料摄入跟踪系统:海报摘要

Mahdi Pedram, Seyed Ali Rokni, Ramin Fallahzadeh, Hassan Ghasemzadeh
{"title":"基于机器学习算法、超声波和颜色传感器的饮料摄入跟踪系统:海报摘要","authors":"Mahdi Pedram, Seyed Ali Rokni, Ramin Fallahzadeh, Hassan Ghasemzadeh","doi":"10.1145/3055031.3055065","DOIUrl":null,"url":null,"abstract":"We present a novel approach for monitoring beverage intake. Our system is composed of an ultrasonic sensor, an RGB color sensor, and machine learning algorithms. The system not only measures beverage volume but also detects beverage types. The sensor unit is lightweight that can be mounted on the lid of any drinking bottle. Our experimental results demonstrate that the proposed approach achieves more than 97% accuracy in beverage type classification. Furthermore, our regression-based volume measurement has a nominal error of 3%.","PeriodicalId":206082,"journal":{"name":"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A beverage intake tracking system based on machine learning algorithms, and ultrasonic and color sensors: poster abstract\",\"authors\":\"Mahdi Pedram, Seyed Ali Rokni, Ramin Fallahzadeh, Hassan Ghasemzadeh\",\"doi\":\"10.1145/3055031.3055065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach for monitoring beverage intake. Our system is composed of an ultrasonic sensor, an RGB color sensor, and machine learning algorithms. The system not only measures beverage volume but also detects beverage types. The sensor unit is lightweight that can be mounted on the lid of any drinking bottle. Our experimental results demonstrate that the proposed approach achieves more than 97% accuracy in beverage type classification. Furthermore, our regression-based volume measurement has a nominal error of 3%.\",\"PeriodicalId\":206082,\"journal\":{\"name\":\"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055031.3055065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055031.3055065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种监测饮料摄入量的新方法。我们的系统由超声波传感器、RGB颜色传感器和机器学习算法组成。该系统不仅可以测量饮料的体积,还可以检测饮料的种类。该传感器单元重量轻,可以安装在任何饮料瓶的盖子上。实验结果表明,该方法在饮料类型分类中准确率达到97%以上。此外,我们基于回归的体积测量的名义误差为3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A beverage intake tracking system based on machine learning algorithms, and ultrasonic and color sensors: poster abstract
We present a novel approach for monitoring beverage intake. Our system is composed of an ultrasonic sensor, an RGB color sensor, and machine learning algorithms. The system not only measures beverage volume but also detects beverage types. The sensor unit is lightweight that can be mounted on the lid of any drinking bottle. Our experimental results demonstrate that the proposed approach achieves more than 97% accuracy in beverage type classification. Furthermore, our regression-based volume measurement has a nominal error of 3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信