基于卷积神经网络的岩石薄片识别

Ren Wei, Z. Minghua, Zhang Sheng, Qiao Jihua, Huang Jinming
{"title":"基于卷积神经网络的岩石薄片识别","authors":"Ren Wei, Z. Minghua, Zhang Sheng, Qiao Jihua, Huang Jinming","doi":"10.18178/wcse.2019.06.052","DOIUrl":null,"url":null,"abstract":"This paper uses the convolutional neural networks to train and identify rock thin sections. There are three innovations in this method. Firstly the convolutional neural network is used in the field of geological experiment testing and it can automatically identify and classify the rock thin sections. Secondly the original image of rock thin sections are sliced and segmented, so that the convolutional neural network could learn more details of the rock mineral texture without damaging the original resolution of the image. Thirdly using other image enhancement techniques, such as random flipping and standardization, can expand the sample data set and enhance the robustness of the model. Finally the training model achieves the desired results.","PeriodicalId":342228,"journal":{"name":"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying Rock Thin Section Based on Convolutional Neural Networks\",\"authors\":\"Ren Wei, Z. Minghua, Zhang Sheng, Qiao Jihua, Huang Jinming\",\"doi\":\"10.18178/wcse.2019.06.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses the convolutional neural networks to train and identify rock thin sections. There are three innovations in this method. Firstly the convolutional neural network is used in the field of geological experiment testing and it can automatically identify and classify the rock thin sections. Secondly the original image of rock thin sections are sliced and segmented, so that the convolutional neural network could learn more details of the rock mineral texture without damaging the original resolution of the image. Thirdly using other image enhancement techniques, such as random flipping and standardization, can expand the sample data set and enhance the robustness of the model. Finally the training model achieves the desired results.\",\"PeriodicalId\":342228,\"journal\":{\"name\":\"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/wcse.2019.06.052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/wcse.2019.06.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用卷积神经网络对岩石薄片进行训练和识别。这种方法有三个创新之处。首先将卷积神经网络应用于地质实验测试领域,实现了岩石薄片的自动识别和分类。其次,对原始岩石薄片图像进行切片和分割,使卷积神经网络在不损害原始图像分辨率的情况下,能够学习到岩石矿物纹理的更多细节;第三,采用随机翻转和标准化等图像增强技术,可以扩大样本数据集,增强模型的鲁棒性。最后,训练模型达到了预期的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Rock Thin Section Based on Convolutional Neural Networks
This paper uses the convolutional neural networks to train and identify rock thin sections. There are three innovations in this method. Firstly the convolutional neural network is used in the field of geological experiment testing and it can automatically identify and classify the rock thin sections. Secondly the original image of rock thin sections are sliced and segmented, so that the convolutional neural network could learn more details of the rock mineral texture without damaging the original resolution of the image. Thirdly using other image enhancement techniques, such as random flipping and standardization, can expand the sample data set and enhance the robustness of the model. Finally the training model achieves the desired results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信