半监督分类的增强学习

Tim Frommknecht, Pedro Alves Zipf, Quanfu Fan, Nina Shvetsova, Hilde Kuehne
{"title":"半监督分类的增强学习","authors":"Tim Frommknecht, Pedro Alves Zipf, Quanfu Fan, Nina Shvetsova, Hilde Kuehne","doi":"10.48550/arXiv.2208.01956","DOIUrl":null,"url":null,"abstract":"Recently, a number of new Semi-Supervised Learning methods have emerged. As the accuracy for ImageNet and similar datasets increased over time, the performance on tasks beyond the classification of natural images is yet to be explored. Most Semi-Supervised Learning methods rely on a carefully manually designed data augmentation pipeline that is not transferable for learning on images of other domains. In this work, we propose a Semi-Supervised Learning method that automatically selects the most effective data augmentation policy for a particular dataset. We build upon the Fixmatch method and extend it with meta-learning of augmentations. The augmentation is learned in additional training before the classification training and makes use of bi-level optimization, to optimize the augmentation policy and maximize accuracy. We evaluate our approach on two domain-specific datasets, containing satellite images and hand-drawn sketches, and obtain state-of-the-art results. We further investigate in an ablation the different parameters relevant for learning augmentation policies and show how policy learning can be used to adapt augmentations to datasets beyond ImageNet.","PeriodicalId":221267,"journal":{"name":"German Conference on Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmentation Learning for Semi-Supervised Classification\",\"authors\":\"Tim Frommknecht, Pedro Alves Zipf, Quanfu Fan, Nina Shvetsova, Hilde Kuehne\",\"doi\":\"10.48550/arXiv.2208.01956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a number of new Semi-Supervised Learning methods have emerged. As the accuracy for ImageNet and similar datasets increased over time, the performance on tasks beyond the classification of natural images is yet to be explored. Most Semi-Supervised Learning methods rely on a carefully manually designed data augmentation pipeline that is not transferable for learning on images of other domains. In this work, we propose a Semi-Supervised Learning method that automatically selects the most effective data augmentation policy for a particular dataset. We build upon the Fixmatch method and extend it with meta-learning of augmentations. The augmentation is learned in additional training before the classification training and makes use of bi-level optimization, to optimize the augmentation policy and maximize accuracy. We evaluate our approach on two domain-specific datasets, containing satellite images and hand-drawn sketches, and obtain state-of-the-art results. We further investigate in an ablation the different parameters relevant for learning augmentation policies and show how policy learning can be used to adapt augmentations to datasets beyond ImageNet.\",\"PeriodicalId\":221267,\"journal\":{\"name\":\"German Conference on Pattern Recognition\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"German Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.01956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"German Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.01956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,出现了一些新的半监督学习方法。随着ImageNet和类似数据集的准确性随着时间的推移而提高,在自然图像分类以外的任务上的性能还有待探索。大多数半监督学习方法依赖于精心手工设计的数据增强管道,该管道无法转移到其他领域的图像上学习。在这项工作中,我们提出了一种半监督学习方法,可以自动为特定数据集选择最有效的数据增强策略。我们以Fixmatch方法为基础,并通过增强的元学习对其进行扩展。在分类训练之前的附加训练中学习增强,并利用双级优化,优化增强策略,使准确率最大化。我们在两个特定领域的数据集(包含卫星图像和手绘草图)上评估了我们的方法,并获得了最先进的结果。我们进一步研究了与学习增强策略相关的不同参数,并展示了策略学习如何用于使增强适应ImageNet以外的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmentation Learning for Semi-Supervised Classification
Recently, a number of new Semi-Supervised Learning methods have emerged. As the accuracy for ImageNet and similar datasets increased over time, the performance on tasks beyond the classification of natural images is yet to be explored. Most Semi-Supervised Learning methods rely on a carefully manually designed data augmentation pipeline that is not transferable for learning on images of other domains. In this work, we propose a Semi-Supervised Learning method that automatically selects the most effective data augmentation policy for a particular dataset. We build upon the Fixmatch method and extend it with meta-learning of augmentations. The augmentation is learned in additional training before the classification training and makes use of bi-level optimization, to optimize the augmentation policy and maximize accuracy. We evaluate our approach on two domain-specific datasets, containing satellite images and hand-drawn sketches, and obtain state-of-the-art results. We further investigate in an ablation the different parameters relevant for learning augmentation policies and show how policy learning can be used to adapt augmentations to datasets beyond ImageNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信