放大ZPP^SAT[1]与双查询问题

Richard Chang, Suresh Purini
{"title":"放大ZPP^SAT[1]与双查询问题","authors":"Richard Chang, Suresh Purini","doi":"10.1109/CCC.2008.32","DOIUrl":null,"url":null,"abstract":"This paper shows a complete upward collapse in the Polynomial Hierarchy (PH) if for ZPP, two queries to a SAT oracle is equivalent to one query. That is, ZPP<sup>SAT[1]</sup> = ZPP<sup>SAT||[2]</sup> rArr ZPP<sup>SAT[1]</sup> = PH. These ZPP machines are required to succeed with probability at least 1/2 + 1/p(n) on inputs of length n for some polynomial p(n). This result builds upon recent work by Tripathi who showed a collapse of PH to S<sub>2</sub> <sup>P</sup>. The use of the probability bound of 1/2 + 1/p(n) is justified in part by showing that this bound can be amplified to 1 - 2<sup>-nk</sup> for ZPP<sup>SAT[1]</sup> computations. This paper also shows that in the deterministic case, P<sup>SAT[1]</sup> = P<sup>SAT||[2]</sup> rArr PH sube ZPP<sup>SAT[1]</sup> where the ZPP<sup>SAT[1]</sup> machine achieves a probability of success of 1/2 - 2<sup>-nk</sup>.","PeriodicalId":338061,"journal":{"name":"2008 23rd Annual IEEE Conference on Computational Complexity","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Amplifying ZPP^SAT[1] and the Two Queries Problem\",\"authors\":\"Richard Chang, Suresh Purini\",\"doi\":\"10.1109/CCC.2008.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows a complete upward collapse in the Polynomial Hierarchy (PH) if for ZPP, two queries to a SAT oracle is equivalent to one query. That is, ZPP<sup>SAT[1]</sup> = ZPP<sup>SAT||[2]</sup> rArr ZPP<sup>SAT[1]</sup> = PH. These ZPP machines are required to succeed with probability at least 1/2 + 1/p(n) on inputs of length n for some polynomial p(n). This result builds upon recent work by Tripathi who showed a collapse of PH to S<sub>2</sub> <sup>P</sup>. The use of the probability bound of 1/2 + 1/p(n) is justified in part by showing that this bound can be amplified to 1 - 2<sup>-nk</sup> for ZPP<sup>SAT[1]</sup> computations. This paper also shows that in the deterministic case, P<sup>SAT[1]</sup> = P<sup>SAT||[2]</sup> rArr PH sube ZPP<sup>SAT[1]</sup> where the ZPP<sup>SAT[1]</sup> machine achieves a probability of success of 1/2 - 2<sup>-nk</sup>.\",\"PeriodicalId\":338061,\"journal\":{\"name\":\"2008 23rd Annual IEEE Conference on Computational Complexity\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2008.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

如果对于ZPP,对SAT oracle的两次查询相当于一次查询,那么本文展示了多项式层次结构(PH)中的完全向上折叠。即ZPPSAT[1] = ZPPSAT||[2] rArr ZPPSAT[1] = ph。对于某个多项式p(n),这些ZPP机器需要在长度为n的输入上以至少1/2 + 1/p(n)的概率成功。这个结果是建立在Tripathi最近的工作基础上的,他显示了PH到S2 p的崩溃。使用1/2 + 1/p(n)的概率界是合理的,部分原因是表明该界限可以在ZPPSAT[1]计算中被放大到1 - 2-nk。本文还证明了在确定性情况下,PSAT[1] = PSAT||[2] rArr PH sub ZPPSAT[1],其中ZPPSAT[1]机器的成功概率为1/2 - 2-nk。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amplifying ZPP^SAT[1] and the Two Queries Problem
This paper shows a complete upward collapse in the Polynomial Hierarchy (PH) if for ZPP, two queries to a SAT oracle is equivalent to one query. That is, ZPPSAT[1] = ZPPSAT||[2] rArr ZPPSAT[1] = PH. These ZPP machines are required to succeed with probability at least 1/2 + 1/p(n) on inputs of length n for some polynomial p(n). This result builds upon recent work by Tripathi who showed a collapse of PH to S2 P. The use of the probability bound of 1/2 + 1/p(n) is justified in part by showing that this bound can be amplified to 1 - 2-nk for ZPPSAT[1] computations. This paper also shows that in the deterministic case, PSAT[1] = PSAT||[2] rArr PH sube ZPPSAT[1] where the ZPPSAT[1] machine achieves a probability of success of 1/2 - 2-nk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信