一种用于长读长DNA序列分析的概率方法

C. G. Molina, J. Mullikin
{"title":"一种用于长读长DNA序列分析的概率方法","authors":"C. G. Molina, J. Mullikin","doi":"10.1109/NNSP.2002.1030016","DOIUrl":null,"url":null,"abstract":"This paper introduces a new algorithm for DNA sequence analysis, based on the use of a reference DNA sequence for the estimation of base positions, and a probabilistic modelling of trace peaks. The new algorithm has been applied to long read-length DNA sequences and its performance has been compared to the base-calling program Phred. The results reported in this paper, after cross-matching with a finished consensus, show a significant improvement by the new algorithm in the final sequence read-length and in the number of correct bases extracted from DNA traces.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A probabilistic approach for long read-length DNA sequence analysis\",\"authors\":\"C. G. Molina, J. Mullikin\",\"doi\":\"10.1109/NNSP.2002.1030016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new algorithm for DNA sequence analysis, based on the use of a reference DNA sequence for the estimation of base positions, and a probabilistic modelling of trace peaks. The new algorithm has been applied to long read-length DNA sequences and its performance has been compared to the base-calling program Phred. The results reported in this paper, after cross-matching with a finished consensus, show a significant improvement by the new algorithm in the final sequence read-length and in the number of correct bases extracted from DNA traces.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种新的DNA序列分析算法,该算法基于参考DNA序列的碱基位置估计和痕量峰值的概率建模。该算法已应用于长读长DNA序列,并与碱基调用程序Phred进行了性能比较。本文报道的结果在与完成的一致性交叉匹配后,表明新算法在最终序列读长和从DNA痕量中提取的正确碱基数量上有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A probabilistic approach for long read-length DNA sequence analysis
This paper introduces a new algorithm for DNA sequence analysis, based on the use of a reference DNA sequence for the estimation of base positions, and a probabilistic modelling of trace peaks. The new algorithm has been applied to long read-length DNA sequences and its performance has been compared to the base-calling program Phred. The results reported in this paper, after cross-matching with a finished consensus, show a significant improvement by the new algorithm in the final sequence read-length and in the number of correct bases extracted from DNA traces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信