基于机器学习的高粱品种识别方法研究

Shoushan Chen, Ziyi Song, Hongyan Xu
{"title":"基于机器学习的高粱品种识别方法研究","authors":"Shoushan Chen, Ziyi Song, Hongyan Xu","doi":"10.1109/ICDSCA56264.2022.9988550","DOIUrl":null,"url":null,"abstract":"Sorghum varieties are closely related to sorghum yield. To achieve rapid identification of sorghum seed varieties, a sorghum variety recognition model based on machine learning was proposed. The morphological features of three kinds of sorghum seed hyperspectral images are extracted by pruning and segmentation, then data features are analyzed and dimensioned by principal component analysis, finally, SVM classifier is used to identify sorghum seed varieties, and high accuracy is achieved.","PeriodicalId":416983,"journal":{"name":"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Identification Method of Sorghum Varieties Based on Machine Learning\",\"authors\":\"Shoushan Chen, Ziyi Song, Hongyan Xu\",\"doi\":\"10.1109/ICDSCA56264.2022.9988550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorghum varieties are closely related to sorghum yield. To achieve rapid identification of sorghum seed varieties, a sorghum variety recognition model based on machine learning was proposed. The morphological features of three kinds of sorghum seed hyperspectral images are extracted by pruning and segmentation, then data features are analyzed and dimensioned by principal component analysis, finally, SVM classifier is used to identify sorghum seed varieties, and high accuracy is achieved.\",\"PeriodicalId\":416983,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSCA56264.2022.9988550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSCA56264.2022.9988550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高粱品种与高粱产量密切相关。为实现高粱种子品种的快速识别,提出了一种基于机器学习的高粱品种识别模型。通过剪枝和分割提取三种高粱种子高光谱图像的形态特征,然后通过主成分分析对数据特征进行分析和量纲化,最后利用支持向量机分类器对高粱种子品种进行识别,取得了较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Identification Method of Sorghum Varieties Based on Machine Learning
Sorghum varieties are closely related to sorghum yield. To achieve rapid identification of sorghum seed varieties, a sorghum variety recognition model based on machine learning was proposed. The morphological features of three kinds of sorghum seed hyperspectral images are extracted by pruning and segmentation, then data features are analyzed and dimensioned by principal component analysis, finally, SVM classifier is used to identify sorghum seed varieties, and high accuracy is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信